

РАСХОДОМЕР ЖИДКОСТИ РС-2М

Руководство по эксплуатации и формуляр

НКИЯ.407212.001 РЭ

По вопросам продаж и поддержки обращайтесь:

Астана +7(77172)727-132 Волгоград (844)278-03-48 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Казань (843)206-01-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Москва (495)268-04-70 Нижний Новгород (831)429-08-12 Новосибирск (383)227-86-73 Ростов-на-Дону (863)308-18-15 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Уфа (347)229-48-12

Единый адрес: trb@nt-rt.ru **Веб-сайт:** www.turbodon.nt-rt.ru

СОДЕРЖАНИЕ

	COALIMITIE	
1	ОПИСАНИЕ РАСХОДОМЕРА	5
	1.1 Описание и работа расходомера	5
	1.1.1 Назначение расходомера	5
	1.1.2 Состав расходомера	5
	1.1.3 Технические характеристики	5
	1.1.4 Комплектность	8
	1.2 Дополнительное оборудование	8
	1.3 Устройство и работа	9
	1.4 Описание и работа составных частей расходомера	9
	1.4.1 Измеритель скорости потока (ИСП)	9
	1.4.2 Расходомерный шкаф	10
2	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	11
	2.1 Эксплуатационные ограничения	
	2.2 Меры безопасности	12
	2.3 Комплект монтажный	12
	2.4 Средства измерений и приспособления	13
	2.5 Монтаж и демонтаж расходомера	13
	2.5.1 Подготовка расходомера к монтажу	
	2.5.2 Расчет установочных размеров ИСП	13
	2.5.3 Монтаж и демонтаж измерителя скорости потока (ИСП)	14
	2.5.4 Монтаж расходомерного шкафа (РШ)	16
	2.6 Работа с расходомером	17
3	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ	43
	3.1 Общие указания	43
	3.2 Порядок проведения технического обслуживания и ремонта	43
4	МАРКИРОВКА И ПЛОМБИРОВАНИЕ	44
5	ТРАНСПОРТИРОВАНИЕ	45
6	ХРАНЕНИЕ	45
	УТИЛИЗАЦИЯ	45
8	РЕСУРСЫ, СРОКИ СЛУЖБЫ РАСХОДОМЕРА	46
9	ГАРАНТИИ ИЗГОТОВИТЕЛЯ	46
	ПОСЛЕГАРАНТИЙНОЕ ОБСЛУЖИВАНИЕ	47
	СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	48
	СВЕДЕНИЯ О ПОВЕРКЕ РАСХОДОМЕРА	49
	СВЕДЕНИЯ О ВВОДЕ В ЭКСПЛУАТАЦИЮ	50
	СВЕДЕНИЯ О ПЕРИОДИЧЕСКИХ ПОВЕРКАХ	51
	УЧЕТ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА	52
16	ОСОБЫЕ ОТМЕТКИ	54
ПР	риложения	55

Настоящее руководство по эксплуатации, объединенное с формуляром, распространяется на расходомеры жидкости РС-2М (далее – расходомеры), выпускаемые НПО «Турбулентность-Дон» и предназначено для изучения их устройства и принципа действия, а также технических характеристик и других сведений, необходимых для обеспечения монтажа, правильной эксплуатации и полного использования технических возможностей расходомеров.

Ввод в эксплуатацию расходомеров должен производиться предприятиемпотребителем после монтажных и пуско-наладочных работ, проводимых специализированной организацией. К эксплуатации расходомеров допускаются лица, изучившие настоящее руководство по эксплуатации и имеющие опыт работы по использованию средств измерений.

Предприятие-изготовитель оставляет за собой право вносить в конструкцию расходомеров изменения непринципиального характера без отражения их в руководстве по эксплуатации.

Расходомеры соответствуют требованиям:

РАСХОДОМЕР ЖИДКОСТИ РС-2М

- технических условий «Расходомеры жидкости РС-2М. Технические условия. НКИЯ.407212.001 ТУ»;
- рекомендаций МИ 2776-2002, «ГСИ. Расход жидкости. Методика выполнения измерений электромагнитным расходомером РС-2М».

Пример записи условного обозначения расходомера при его заказе и в документации другого изделия, где он применен, расположен в приложении А.

1 ОПИСАНИЕ РАСХОДОМЕРА

1.1 Описание и работа расходомера

1.1.1 Назначение расходомера

Расходомер предназначен для измерения и учёта объёмного расхода электропроводящей жидкости, в том числе сточных и неочищенных вод, холодной и горячей воды в системах водоснабжения и теплоснабжения.

Расходомер может использоваться в составе автоматизированных систем сбора данных и управления технологическими процессами.

Конструкция измерительного устройства расходомера позволяет производить монтаж на трубопровод без снятия давления.

Первичная и периодическая поверка расходомера выполняется по методике поверки НКИЯ.407212.001 И1 с межповерочным интервалом один раз в два года.

1.1.2 Состав расходомера

Расходомер имеет блочную конструкцию и состоит из двух основных блоков:

- измерителя скорости потока (далее ИСП)
- расходомерного шкафа (далее РШ),

соединенных кабелем связи.

Внешний вид основных блоков представлен в приложениях Б и В.

1.1.3 Технические характеристики

1.1.3.1 Основные технические характеристики расходомера приведены в таблице 1.

Таблица 1

Характеристика	Значение характеристики
Диапазон измерений объемного расхода жидкости, м ³ /ч	от 0,043 до 40 856
Пределы допускаемой относительной погрешности при	
измерении расхода, %, в диапазоне скоростей потока	
жидкости, V, м/с:	
$-0.015 \le V < 0.1$	±2
- 0,1 ≤ V ≤5	±1
Диапазон температур электропроводящей жидкости, °С	от 0 до 150
Допускаемые суточные значения хода часов, с	±5
Удельная электропроводимость жидкости, См/м	от 10 ⁻⁵ до 10
Максимальное избыточное давление в трубопроводе, МПа	2,5
Диаметр условного прохода трубопровода, мм	от 32 до 1700
Диаметры стержня ИСП, мм	10; 14
Параметры питания:	
- напряжение переменного тока, В	220±22
- частота, Гц	50±1
Масса расходомера, кг, не более	25
Габаритные размеры блока ИСП, мм, не более	80×150×400
Габаритные размеры РШ, мм, не более	292×392×185

1.1.3.2 Длина стержня ИСП ($L_{\rm ИСП}$, мм) зависит от диаметра условного прохода трубопровода, определяемого при его заказе (см. таблицу 2). Значение длины стержня ИСП указывается в разделе 11 руководства по эксплуатации.

Таблина 2

РАСХОДОМЕР ЖИДКОСТИ РС-2М

Таолица 2		
Внутренний диаметр измерительного трубопровода Ди, мм	Длина стержня ИСП L _{исп} , мм	Примечание
Для диаметра ИСП 10		
32 ≤ Ди < 63	242	$E_1 = 0,5 \cdot Д_{\scriptscriptstyle M}$
63 ≤ Ди ≤ 80	292	$E_1 = 0,5 \cdot Д_{\scriptscriptstyle M}$
Для диаметра ИСП 14		
100 ≤ Ди ≤ 200	362	$E_1 = 0,5 \cdot Д_{\scriptscriptstyle M}$
200 < Ди ≤ 600	362	$E_2 = 0,121 \cdot Д_{\scriptscriptstyle H}$
600 < Ди ≤ 1000	412	$E_2 = 0,121 \cdot Д_{\scriptscriptstyle M}$
1000 < Ди < 1700	452	$E_2 = 0,121 \cdot Д_{\scriptscriptstyle M}$

1.1.3.3 Порог чувствительности расходомера по скорости потока составляет 0,01 м/с. Порог чувствительности расходомера по расходу определяется по формуле 1.

$$Q_{\text{\tiny 4VBCT}} = V_{\text{\tiny 4VBCT}} \cdot S_{\text{\tiny TD}} \tag{1}$$

где, $V_{\text{чувст}}$ – порог чувствительности расходомера по скорости потока (=0,01 м/c),

 $S_{\rm Tp}$ — площадь сечения внутреннего прохода трубопровода, $S_{\rm Tp} = \frac{\pi \ ({\rm DN})^2}{4}$ г.е., $\pi \approx 3.14$:

DN – внутренний диаметр трубопровода.

Пример: Для DN=100 мм,

Таблица значений порога чувствительности по расходу в зависимости от диаметра трубопровода представлена в таблице 3.

Таблица 3	
DN, mm	$Q_{\text{чувств}}$, $\text{м}^3/\text{ч}$
32	0,02
40	0,04
50	0,07
60	0,1
70	0,13
80	0,18
90	0,18 0,22
100	0,28
125	0,44
150	0,63
175	0,86
200	1,13
250	1,76
300	2,54
350	3,46
400	4,52
450	5,72
500	7,06
600	10,17
700	13,84
800	18,08
900	22,89
1000	28,26
1100	34,19
1200	40,69
1400	55,38
1600	72,34

Примечание: Для диаметров DN, отличных от представленных в таблице 3, порог чувствительности определяется по формуле 1.

- 1.1.3.4 Электрическая изоляция силовых цепей (220 В, 50 Гц) в нормальных климатических условиях выдерживает в течение 1 мин. воздействие испытательного напряжения 1500 В, 50 Гц.
- 1.1.3.5 Электрическое сопротивление изоляции силовых цепей (220 В, 50 Гц) в нормальных климатических условиях - не менее 20 мОм.
- 1.1.3.6 По способу защиты от поражения электрическим током расходомер относится к классу 01 по ГОСТ 12.2.007.0-75.
- 1.1.3.7 Корпуса всех составных частей расходомера обеспечивают защиту от попадания воды и твердых тел в соответствии с ГОСТ 14254, степень защиты ІР65.
- 1.1.3.8 Расходомер устойчив к воздействию синусоидальных вибраций с параметрами:
 - диапазон частот 5-35 Гц;
 - амплитуда смещения 0,35 мм.
- 1.1.3.9 Расходомер сохраняет работоспособность при воздействии внешних магнитных полей с частотой питающей сети напряженностью не более 40,0 А/м.
 - 1.1.3.10 В транспортной таре расходомер выдерживает:
 - температуру окружающей среды от -50 до +50 $^{\circ}$ С;

- относительную влажность 95% при 35 °C:
- 1.1.3.11 Требования к минимальным длинам прямых участков трубопровода перед измерительным сечением приведены в таблице 4.

	-	- 4
Lar	блица	4
1 41	лица	

Тип местного сопротивления	Длина, Ду
Колено или тройник	20
Два или более колен в одной плоскости	20
Два или более колен в разных плоскостях	50
Полностью открытая задвижка	20
Конфузор	20
Диффузор	20

1.1.3.12 Длина прямого участка измерительного трубопровода после установки расходомера должна быть не менее 5Ду.

1.1.4 Комплектность

Комплект поставки расходомера в базовой комплектации соответствует таблице 5.

Таблица 5

Обозначение	Наименование	Кол-во	Примеч.
НКИЯ.407212.100 СБ	Расходомерный шкаф	1 шт.	
НКИЯ.407212.200 СБ	Измеритель скорости потока	1 шт.	В зав.от заказа
	Сетевой шнур	1 шт.	
НКИЯ.407212.010 КМ	Комплект монтажный	1 шт.	
НКИЯ.407212.001 РЭ	Расходомеры жидкости РС-2М.	1 экз.	
11KHM.407212.001 FJ	Руководство по эксплуатации и формуляр		
	Расходомеры жидкости РС-2М.	1 экз.	Допускается постав-
НКИЯ.407212.001 И1	Методика поверки		лять 1 экз.в один
			адрес отгрузки
	Блок грозозащиты по питанию TPS-01	1 шт.	По доп. заказу
	-		

1.2 Дополнительное оборудование

- 1.2.1 В соответствии с заказом расходомер может дополнительно комплектоваться следующим оборудованием:
 - датчик давления;
 - внешнее термосопротивление;

 - 1.2.2 Датчик давления должен соответствовать следующим характеристикам:
 - выходной сигнал 4-20, 0-5 или 0-20 мА;
 - рабочая температура, °C: -50 ... + 70;
 - напряжение питания от 12-30 В.

Примечание: Рекомендуется применять датчики давления Turbo Flow PS или 415-ДИ.

- 1.2.3 Внешнее термосопротивление должно соответствовать следующим характеристикам:
 - номинальная статическая характеристика: Pt100;
 - диапазон измеряемых температур, °C: -50...+150;
 - класс точности: A;
 - рабочий ток, мА, не более: 5.

Примечание: Рекомендуется применять термосопротивление ДТСхх4.

- 1.2.4 Принтер LX-350 (фирмы EPSON), обеспечивающий вывод информации на бумажный носитель в виде отчетов:
 - о текущем, среднечасовом и суточном расходе жидкости;
 - о значениях давления за отчетный период;
 - о кодах нештатных ситуаций и изменениях параметров настройки.

Настройка принтера при работе с расходомером указана в приложении Н.

Схема подключения к расходомеру - в соответствии с приложениями К и Л.

1.3 Устройство и работа

1.3.1 Принцип действия расходомера основан на явлении электромагнитной индукции. При движении электропроводящей жидкости в магнитном поле, создаваемом катушкой возбуждения первичного измерительного преобразователя (далее -ПИП) ИСП, в ней наводится электродвижущая сила, пропорциональная скорости потока жидкости.

Электродвижущая сила – Е, определяется по формуле:

$$E = K \cdot B \cdot V \cdot b \tag{3}$$

где, b – расстояние между измерительными электродами (диаметр ПИП), мм;

- V средняя скорость (измеряют в точке средней скорости, расположенной в 0,121Ди или в 0,5Ди в зависимости от диаметра трубопровода), м/с;
- К безразмерный коэффициент, определяемый геометрическими и конструктивными параметрами преобразователя;
 - В магнитное поле, Тл.

1.4 Описание и работа составных частей расходомера

1.4.1 Измеритель скорости потока (ИСП)

- 1.4.1.1 ИСП конструктивно состоит из корпуса и жестко соединенного с ним стержня с первичным измерительным преобразователем (далее – ПИП).
- 1.4.1.2 ПИП выполнен в виде цилиндрического стержня из немагнитной нержавеющей стали 12Х18Н10Т с чувствительным элементом, представляющим собой электромагнитную систему, состоящую из катушки возбуждения магнитного поля, покрытую электроизоляционным материалом и установленными на его наружной поверхности двумя измерительными электродами из 12Х18Н10Т (внешний вид ИСП см. приложение Б).
- 1.4.1.3 Электропитание ИСП осуществляется напряжением постоянного тока 24...27 В.
 - 1.4.1.4 Ток, потребляемый ИСП, не превышает 0.3 А.
- 1.4.1.5 ИСП устанавливается в металлический или пластиковый трубопровод.

1.4.2 Расходомерный шкаф

РАСХОДОМЕР ЖИДКОСТИ РС-2М

- 1.4.2.1 В состав вторичного блока (расходомерного шкафа) входят: вычислитель расхода (далее – ВР), базовый блок питания (далее – ББ) со встроенным блоком автономного питания (далее – БАП).
- 1.4.2.2 Конструктивно РШ представляет собой пластмассовый корпус, на лицевой стороне которого установлена панель вычислителя расхода (далее – ВР), а внутри корпуса расположены электронные платы, выполняющие следующие функции:
 - обеспечение питания блока ИСП:
 - преобразование и обработка сигналов, полученных от блока ИСП;
- архивирование в энергонезависимой памяти и вывод на ЖК-индикатор результатов измерений, вычислений (расхода и давления (при наличии датчика давления)) и параметров функционирования в течение предыдущих 365 дней;
- передача архивной информации и параметров настройки на принтер, ПК или устройство передачи данных (модем, контроллер, и т.п.) по интерфейсу RS-232;
 - автоматический контроль наличия и классификации неисправностей;
 - обеспечение автономного питания расходомера от внутренней АКБ.
- 1.4.2.3 РШ может комплектоваться встроенным модемом, что позволяет обеспечить передачу данных по беспроводному каналу связи GSM. Для этих целей в РШ предусмотрены слот для sim-карты и разъем для подключения GSM антенны (приложение В, поз.12, 13).

В нижней части РШ расположены разъемы для коммутации с ИСП и дополнительными периферийными устройствами. Внешний вид РШ приведен в приложении В. Схемы подключения ИСП и РШ приведены в приложениях Ки Л.

_ 1 mm

РАСХОДОМЕР ЖИДКОСТИ РС-2М

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

- 2.1.1 Монтаж, ввод в эксплуатацию, сервисное обслуживание и поверка расходомера должны проводиться организацией, имеющей разрешение на производство данного вида работ.
- 2.1.2 Расходомер является неремонтируемым в условиях эксплуатации изделием, ремонт осуществляется предприятием-изготовителем, или предприятием, имеющим разрешение предприятия-изготовителя.
 - 2.1.3 Пределы изменения напряжения питающей сети от 187 до 242 В.
 - 2.1.4 Пределы изменения частоты питающей сети от 48,5 до 51,5 Гц.
- 2.1.5 Расходомер сохраняет свои характеристики при воздействии внешнего переменного магнитного поля с частотой $50~\Gamma$ ц и напряженностью не более $40.0~\mathrm{A/m}$.
- 2.1.6 Расходомер сохраняет свои характеристики при температуре измеряемой среды от 0 до +150 °C.
- $2.1.7\,$ ИСП сохраняет свои характеристики в диапазоне эксплуатационных температур от минус 50 до плюс 70 $^0{\rm C}$ при относительной влажности до 95 % при температуре +35 $^0{\rm C}.$
- 2.1.8 РШ устанавливаются в помещениях (операторских) при температуре окружающей среды от +5 °C до +50 °C и относительной влажности до 80 % при температуре +35 °C.
- 2.1.9 Монтаж ИСП на измерительном участке трубопровода осуществляется перпендикулярно оси трубопровода в соответствии с приложением И. Рекомендуется производить монтаж ИСП в вертикальном положении.
- 2.1.10 Заполнение измерительного трубопровода электропроводящей жидкостью должно составлять 100 %.
- 2.1.11 Внутренний диаметр измерительного трубопровода от 32 до 1700 мм, при избыточном давлении от 0 до 2,5 МПа.
- 2.1.12 Требования к протяженности прямых участков измерительного трубопровода приведены в таблице 4.
- 2.1.13 Соединение ИСП с РШ должно быть выполнено экранированным кабелем (длиной не более 1500 м), сопротивление которого не превышает 20 Ом.
- 2.1.14 Для сведения к минимуму влияния электромагнитных помех соединение экранирующей оплетки сигнального кабеля должно быть выполнено только в одной точке со стороны РШ.
- 2.1.15 Не допускается прокладка сигнального кабеля параллельно кабелям и проводам питающей сети на расстоянии менее 1 метра. Пересечение сигнального кабеля с кабелями и проводами питающей цепи должно выполняться под прямым углом.
- 2.1.16 Не допускается размещение РШ в местах, где на него может попадать вода, а также вблизи источников теплового и электромагнитного излучений. В воздухе должны отсутствовать пары кислот, щелочей, аммиака, сернистых и других агрессивных газов, вызывающих коррозию.
- 2.1.17 Перед проведением сварочных, а также любых монтажных работ на трубопроводе, необходимо отключить питание расходомера и извлечь блок ИСП из трубопровода, а после проведения работ произвести промывку системы.

- 2.1.18 Не допускается подключение сварочных аппаратов, насосов и других мощных электрических аппаратов, на одну линию питания (сеть \sim 220 В) совместно с расходомером.
- 2.1.19 Корпус РШ расходомера (клемма заземления, приложение В) должен быть надежно соединен с главной заземляющей шиной (главным заземляющим зажимом) объекта медным проводом сечением не менее 4,0 мм² (ГОСТ Р 50571.10-96, ГОСТ 10434-82).

2.2 Меры безопасности

- 2.2.1 К эксплуатации расходомера допускаются лица, изучившие настоящее руководство по эксплуатации и прошедшие необходимый инструктаж.
- 2.2.2 При монтаже, подготовке к пуску, эксплуатации и демонтаже расходомера соблюдать требования правил техники безопасности, установленными на объекте и регламентируемыми при работе с трубопроводами под давлением, Правил технической эксплуатации электроустановок потребителей, Межотраслевых правил по охране труда (правила безопасности) при эксплуатации электроустановок.
- 2.2.3 Сварочные работы должны выполняться сварщиком, аттестованным в соответствии с требованиями Ростехнадзора.
- 2.2.4 При проведении работ с устройствами КИПиА опасными факторами являются переменное напряжение с действующим значением до 242 В, частотой 50 Гц.
- 2.2.5 При работе с устройствами КИПиА необходимо пользоваться монтажным инструментом с изолирующими рукоятками. Запрещается использовать неисправные приборы и электроинструменты.
- 2.2.6 При эксплуатации расходомеры должны подвергаться систематическим осмотрам.

2.3 Комплект монтажный

HOTOVOOK HUNKHIII

В монтажный комплект расходомера входят:

– патруоок нижнии	– 1 шт.
– кран шаровой	– 1 шт.
 площадка базовая 	– 1 шт.
- кольцо металлическое уплотнительное	– 2 шт.
 кольцо полиуретановое уплотнительное 	– 1 шт.
- втулка уплотнительная	– 1 шт.
– контргайка	– 2 шт.
– гайка	– 4 шт.
 шпилька блока ИСП крепежная 	– 2 шт.
– болт М6	– 2 шт.
- разъемы коммутационные (в зависимости от заказа):	
LTW12-08BFFA-SL8001 / 2PMT18КПН7Г1В1В (для системного кабеля)	– 1 шт.
LTW12-05BMMA-SL8001 / 2PMT14КПН4Ш1В1В (для дат- чика давления)	– 1 шт.
LTW12-05BFFA-SL8001 (для внешнего термосопротивления)	– 1 шт.
DB9-F	– 1 шт.

2.4 Средства измерений и приспособления

При монтаже расходомера должны использоваться следующие средства измерений и приспособления:

- \bullet стальная рулетка с миллиметровыми делениями РП-10, абсолютная погрешность при измерении длины \pm 0,5 мм;
- штангенциркуль ШЦ-Ш, ГОСТ 166 73, диапазон измерения расстояния 0...150 мм погрешностью ± 0.05 мм;
 - толщиномер ультразвуковой, абсолютная погрешность ±0,05 мм;
 - рейка КБА 9.000.000;
 - приспособление для сухой врезки в трубопровод (ПСВГ).

Примечание: Перечисленные средства измерений и приспособления в монтажный комплект не входят.

2.5 Монтаж и демонтаж расходомера

2.5.1 Подготовка расходомера к монтажу

- 2.5.1.1 При отрицательной температуре окружающего воздуха и внесения расходомера в помещение с положительной температурой следует, во избежание конденсации влаги, выдержать изделие в упаковке в течение трех часов.
- 2.5.1.2 Распаковать расходомер, провести внешний осмотр, убедиться в отсутствии механических повреждений, проверить комплектность (таблица 5), наличие заводских пломб и документации.
- 2.5.1.3 Убедиться в исправном состоянии приспособления для сухой врезки в трубопровод (ПСВГ), при этом уделить особое внимание:
 - состоянию запорной арматуры;
 - состоянию прокладок;
 - исправности креплений;
- состоянию сверла (сверло с изломанными и затупленными режущими частями к применению не допускается).
- 2.5.1.4 При обнаружении внешних повреждений расходомера следует отложить монтаж расходомера до выяснения специалистом возможности его дальнейшего применения.
- 2.5.1.5 Изучить руководство по эксплуатации расходомера, проектную документацию, убедиться в правильности выбора мест монтажа составных частей расходомера (см. п. 2.1).

2.5.2 Расчет установочных размеров ИСП

- 2.5.2.1 Измерения необходимо проводить металлической рулеткой по ГОСТ 7502 69. Толщину стенки измеряют ультразвуковым толщиномером. См. приложение Ж.
 - 2.5.2.2 Вычислить наружный диаметр трубопровода (Д $_{\rm H}$, мм) по формуле:

$$\prod_{H} = \frac{L_0}{\pi},$$
(2)

- где, L_0 окружность трубопровода (мм), определяется при непосредственном измерении металлической рулеткой.
- 2.5.2.3 Измерить толщину стенки трубы ультразвуковым толщиномером в соответствии с РЭ на прибор.
 - 2.5.2.4 Вычислить внутренний диаметр трубопровода (Ди, мм):

где, Д_н – наружный диаметр трубопровода (мм);

Н – толщина стенки трубопровода (мм).

2.5.2.5 Вычислить точку средней скорости потока:

$$E_2 = 0.121 \cdot \Pi_{yy} \tag{4.1}$$

где E_2 – точка средней скорости потока (см. таблицу 2);

- точку максимальной скорости потока:

$$\mathbf{E}_1 = \mathbf{0.5} \cdot \mathbf{\Pi}_{\mathbf{u}} \tag{4.2}$$

где E_1 – точка максимальной скорости потока (см. таблицу 2);

Ди – внутренний диаметр трубопровода (мм).

2.5.2.6 Вычислить установочный размер ИСП L (мм) по формуле:

$$L = L_{UCH} - (B + H + E) \tag{5}$$

где, $L_{\text{ИСП}}$ – длина стержня ИСП (мм) от основания коробки и до середины чувствительного элемента;

Е – точка средней скорости потока (мм);

B – расстояние от верхней кромки «крепежной площадки» до внешней поверхности трубопровода (мм), определяется с помощью штангенциркуля;

Н – толщина стенки трубопровода (мм).

Примечания:

- 1. наружная поверхность трубы должна быть тщательно зачищена и не иметь вмятин и выступов;
- 2. определение и вычисление размеров производится по среднему арифметическому значению из четырех;
 - 3. результаты замеров и вычислений заносятся в протокол замеров (приложение X);
- 4. применяемые средства измерений при определении размеров в соответствии с п.2.4.

2.5.3 Монтаж и демонтаж измерителя скорости потока (ИСП)

- 2.5.3.1 Врезка в трубопровод (на стальную трубу) выполняется в следующей последовательности:
- очистить участок трубопровода от изоляции, краски и зачистить место приварки нижнего патрубка;
- с помощью рейки КБА.9.000.000 выставить нижний патрубок перпендикулярно оси трубопровода и приварить его (см. приложение Γ);
 - собрать конструкцию ввода;
 - произвести монтаж ПСВГ (см. приложение Д);
 - затянуть уплотнительную втулку и открыть шаровой кран;
 - с помощью гаек на крепежных шпильках притянуть сверло к трубопроводу;
- неторопливыми движениями (по часовой стрелке) с помощью рычага произвести врезку (при ослаблении пружин необходимо притягивать сверло к трубопроводу);

- после ввода сверла в трубопровод необходимо ослабить гайки крепежных шпилек и уплотнительную втулку;
 - извлечь сверло до контрольной риски;
 - закрыть шаровой кран;
 - демонтировать ПСВГ;
- проконтролировать качество приварки нижнего патрубка и герметичность конструкции ввода путем осмотра сварных швов и резьбовых соединений на предмет утечки жидкости.
- 2.5.3.2 Врезка в трубопровод (на пластиковую трубу) выполняется в следующей последовательности:
 - очистить участок трубопровода от изоляции, краски и загрязнений;
 - установить седелку на трубопровод;
 - собрать конструкцию ввода;
 - произвести монтаж ПСВГ (см. приложение Д);
 - затянуть уплотнительную втулку и открыть шаровой кран;
 - с помощью гаек на крепежных шпильках притянуть сверло к трубопроводу;
- неторопливыми движениями (по часовой стрелке) с помощью рычага произвести врезку (при ослаблении пружин необходимо притягивать сверло к трубопроводу);
- -после ввода сверла в трубопровод необходимо ослабить гайки крепежных шпилек и уплотнительную втулку;
 - извлечь сверло до контрольной риски;
 - закрыть шаровой кран;
 - демонтировать ПСВГ;
- проконтролировать герметичность конструкции ввода и установленной седелки путем осмотра стыковых и резьбовых соединений на предмет утечки жидкости.
 - 2.5.3.3 Монтаж ИСП производится в следующей последовательности:
- смонтировать на установленный шаровый кран площадку базовую так, чтобы стрелка на площадке соответствовала направлению потока жидкости в трубопроводе;
- выполнить комплекс замеров и на основании полученных данных произвести расчет по приведенным в п. 2.5.2 формулам;
- заглубить блок ИСП через уплотнительную втулку в конструкцию ввода ориентировочно в точку средней скорости потока Е так, чтобы направление стрелки на корпусе ИСП совпадало с направлением потока жидкости в трубопроводе;
- -с помощью крепежных шпилек зафиксировать блок ИСП к базовой площадке;
- ослабить, при необходимости, уплотнительную втулку базовой площадки и открыть шаровой кран;
- -с помощью гаек на крепежных шпильках точно установить блок ИСП в трубопровод в соответствии с расчетными размерами в точку средней или максимальной скорости потока Е (см.п.2.5.2);
 - затянуть уплотнительную втулку базовой площадки;

- проверить герметичность всех резьбовых и уплотнительных соединений втулки базовой площадки путем осмотра сварных швов и резьбовых соединений на предмет утечки жидкости.
- 2.5.3.4 Демонтаж ИСП производится при отключенном питании расходомера в следующей последовательности:
 - отсоединить разъем соединительного сигнального кабеля от блока ИСП;
 - ослабить гайки крепежных шпилек и уплотнительную втулку;
 - извлечь ИСП до контрольной риски;
 - закрыть кран и вынуть ИСП.
- 2.5.3.5 ВНИМАНИЕ! Рекомендуется при установке ИСП не выходить за угол 90°±45° от горизонтальной плоскости (приложение И)!

2.5.4 Монтаж расходомерного шкафа (РШ)

- 2.5.4.1 Монтаж РШ производится в вертикальном положении в месте, определенном проектной документацией, с учетом эксплуатационных ограничений п.2.1, в следующей последовательности:
- установить РШ при помощи петель на предварительно подготовленные места крепления;
- соединить клемму заземления с главной заземляющей шиной (главным заземляющим зажимом) предварительно оконцованным медным проводом сечением не менее 4.0 мм^2 (ГОСТ 10434-82);
 - подключить сетевой шнур к разъему сетевого фильтра.
- 2.5.4.2 Монтаж соединительного кабеля производится по «трассе», определенной проектной документацией, с учетом эксплуатационных ограничений п.2.1, в следующей последовательности:
- размотать кабель по всей длине и втянуть при помощи приспособления в защитную гофрированную трубу;
- распаять предварительно подготовленные жилы кабеля к разъему XS2 со стороны блока ИСП, и к разъему DB9-F со стороны РШ в соответствии со схемой в приложении М.
- подготовить экранирующую оплетку сигнального кабеля путем обрезания её со стороны блока ИСП вместе с изолирующей наружной оболочкой кабеля, после чего место среза заизолировать. Со стороны РШ оставить свободным участок оплётки длиной около 20 см.
- со стороны РШ припаять экранирующую оплетку у основания к корпусу разъема DB9-F;
 - подсоединить разъемы сигнального кабеля к блоку ИСП и к РШ.
- 2.5.4.3 После выполнения всех монтажных работ подключить вилку сетевого шнура к розетке питающей сети непосредственно или через блок грозозащиты (см. таблицу 5), включить питание расходомера и проверить его работоспособность.

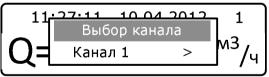
2.6 Работа с расходомером

- 2.6.1 Работа с расходомером, в том числе настройка, распечатка отчетов, просмотр архива и информации о текущих значениях измеряемых параметрах производится при помощи клавиатуры и ЖКИ вычислителя расхода ВР, расположенной на передней панели расходомерного шкафа (приложение В).
- 2.6.2 Контроль работы РШ осуществляется при помощи светодиодной линейки, расположенной на его передней панели (рисунок 1).

сеть питание разряд заряд ИСП1 ИСП2 ИСП3 модем

Рисунок 1 – Светодиодная матрица (для многоканального расходомера)

Индикация 220 В (при подключении к сети 220 В горит красным);
Загорается желтым при подаче питания (сетевого или автономного);
Загорается красным при низком уровне заряда АКБ;
Заряд АКБ (при заряде АКБ горит зеленым);
Питание ИСП1 (при наличии питания горит зеленым);
Питание ИСП2 (при наличии питания горит зеленым);
Питание ИСП3 (при наличии питания горит зеленым);
Питание модема (при наличии питания горит желтым).


2.6.3 Назначение клавиш:

[**0**] **по** [**9**] – ввод пароля и изменение параметров / просмотр текущих значений;

[OK] – вход в основное меню, вход в режим редактирования, подтверждение ввода значения;

[F 1] — выбор / смена измерительной линии-канала (функция доступна при наличии более одного блока ИСП в комплекте):

Смена канала осуществляется при нажатии клавиши [F 1]. На ЖКИ прибора отображается экран:

С помощью клавиш [\leftarrow] [\rightarrow] происходит выбор и смена канала. Выбор канала подтверждается клавишей [OK].

[F 2] – ввод отрицательных значений;

 $[F\ 3]$ – удаление символов.

[C] – выход из основного меню / из подменю, выход из режима редактирования / режима просмотра параметров;

«.» – вывод на печать (для подменю «Архив»);

 $[\leftarrow][\rightarrow]$ – горизонтальное перемещение курсора при вводе параметров и перехода из режима в режим;

 $[\uparrow]$ [\downarrow] — изменение значения при вводе параметров, перемещение по пунктам меню и подменю.

Примечание: Для параметров «Давление» и «Температура» возможна смена елиниц измерения:

- для давления МПа, кПа, кгс/см 2 , атм, мм рт.ст, мм в.ст, бар;
- для температуры С, К, F.

РАСХОДОМЕР ЖИДКОСТИ РС-2М

Выбор единицы измерения осуществляется с помощью клавиш [\leftarrow] [\rightarrow].

- 2.6.4 Назначение клавиш на передней панели РШ:
- [1] текущий расход жидкости $(Q, M^3/\Psi)$ и скорость измеряемой среды (V, M/C);
- [2] температура внутреннего термосопротивления (T1, $^{\circ}$ C) и температура внешнего термосопротивления (T2, $^{\circ}$ C);
 - [3] давление в трубопроводе (Р, МПа);
 - [4] суммарный объем за текущие сутки (VH, м³);
 - [5] суммарный объем за предыдущие сутки (Vн, м³);
 - [6] суммарный объем с начала эксплуатации (Vн, м³);
 - [7] системное сообщение;
- [8] время наработки с начала эксплуатации (ч/м) и время простоя с начала эксплуатации (ч/м);
 - [9] суммарный объем за текущий месяц (Vн, м³);
 - [0] суммарный объем за прошлый месяц (VH, м³).
- 2.6.5 Включение питания расходомера производится клавишами выключателя «220 В» и переключателя «АКБ», расположенными на нижней панели расходомерного шкафа (приложение В). Обе клавиши переводятся в положение І. В этом режиме аккумуляторная батарея работает в буфере с сетевым блоком питания. При наличии питания загораются индикаторы на передней панели РШ «СЕТЬ», «ИСП».
- 2.6.6 Выключение питания расходомера осуществляется переводом обеих клавиш выключателя «220 В» и переключателя «АКБ» в положение 0.
- 2.6.7 Включить питание расходомера. При этом в вычислителе расхода (BP) начинается процесс восстановления архива.

ВНИМАНИЕ! Во избежание сбоев и потери данных запрещается допускать перебои в электропитании (выключать расходомер) до окончания процесса восстановления архива.

- 2.6.8 Для корректных показаний вычислителя (расход, температура, давление) необходима наработка прибора в течение 30 мин.
- 2.6.9 После включения питания на ЖК-дисплее расходомера автоматически отображаются текущие значения. Просмотр всех текущих значений осуществляется с помощью клавиш [\uparrow] [\downarrow]:
 - текущего расхода жидкости;

Q=3600.000 ^{M3}/4

- скорости измеряемой среды;

11:27:11 10.04.2012 1 V=100.000 ^M/c

температуры внутреннего термосопротивления;

11:22:36 10.04.2012 1
T₁=10.00 ⁹C

температуры внешнего термосопротивления;

 $T_2=10.00$ $^{\circ}$ C

абсолютного давления;

11:23:51 10.04.2012 1 P=0.101 MΠa

кода нештатной ситуации, сообщаемого от ИСП;

11:27:03 10.04.2012 1 HC_{nn}:00000000

- времени наработки расходомера с момента запуска в работу;

11:20:31 10.04.2012 1

t = 165 час
30 мин
16 сек

- времени простоя;

РАСХОДОМЕР ЖИДКОСТИ РС-2М

- 2.6.10 В первой строке дисплея отображаются:
- текущие значения времени и даты;
- буква «С» при наличии сообщения от ИСП;
- буква «Е» при отсутствии связи с ИСП;
- буква «НР» при наличии НС от ИСП (когда Alarm≠0).
- буква «НВ» при наличии НС от ВР (когда значения по расходу от ИСП выходят за пределы Q_{min} и Q_{max}).
- 2.6.11 Управление работой расходомера осуществляется через основное меню (рисунок 2).

Вход в систему «ОСНОВНОЕ МЕНЮ» осуществляется нажатием клавиши [OK], перемещение между пунктами - с помощью клавиш $[\uparrow]$ $[\downarrow]$, вход в выбранный пункт и подпункты - с помощью нажатия клавиши [OK]. Выход в предыдущий пункт меню осуществляется клавишей [C].

2.6.12 Пункт «Печать» предназначен для вывода данных на устройство печати и состоит из следующих подпунктов (рисунок 3).

Рисунок 3

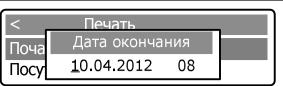
Для входа в подменю «**Печать**» необходимо выбрать его в списке и подтвердить выбор нажатием **[OK]**.

2.6.12.1 Пункт «**Текущие**» обеспечивает вывод на печать мгновенных показаний вычислителя (см. приложение П).

Распечатка отчета происходит после подтверждения выбора клавишей [ОК], при этом на ЖК-индикаторе отображается:

После завершения печати на дисплей выводится сообщение о завершении печати и происходит автоматический возврат в пункт меню «Печать».

2.6.12.2 Пункт «Почасовые данные» обеспечивает вывод на печать данных за каждый час выбранной даты (приложение Р).


Для печати почасового отчета необходимо выбрать соответствующий подпункт меню в пункте «Печать» и подтвердить выбор нажатием клавиши [OK]:

В открывшемся окне установить дату и (или) время начала отчетного периода. Изменение времени / даты осуществляется с помощью клавиш [0] - [9], перемещение между цифрами – с помощью клавиш [\leftarrow] [\rightarrow] Активная цифра выделяется подчеркиванием.

Информация об окончании отчетного периода устанавливается после повторного нажатия клавиши [ОК]:

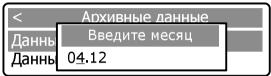
Для распечатки отчета необходимо еще раз нажать клавишу [ОК], после чего на дисплее появляется сообщение о печати документа.

- 2.6.12.3 Пункт «Посуточные данные» обеспечивает вывод на печать данных за каждые сутки выбранного периода времени (приложение С). Для печати отчета посуточных данных необходимо выполнить действия, аналогичные описанным выше в п.2.6.12.2.
- 2.6.12.4 Пункт «Архив событий» обеспечивает выход на печать архива событий за определенный промежуток времени (приложение Т). Для печати отчета необходимо выполнить действия, аналогичные описанным выше в п. 2.6.12.2.
- 2.6.12.5 Пункт «База настроек» позволяет получить отчет в реальном времени по настраиваемым параметрам расходомера (приложение У). Для получения отчета необходимо выполнить действия, аналогичные описанным выше в п. 2.6.12.2.
- 2.6.12.6 Пункт «Архив НС» обеспечивает выход на печать архива нештатных ситуаций за определенный промежуток времени (приложение Ф). Для печати отчета необходимо выполнить действия, аналогичные описанным выше в п. 2.6.12.2.

После завершения печати любого из отчетов происходит автоматический возврат в меню «Печать».

2.6.13 Пункт меню «Архив» предназначен для быстрого просмотра суммарных значений расхода за предыдущие 12 месяцев (рисунок 4).




Рисунок 4

Для входа в подменю «Архив» необходимо выбрать его в списке и подтвердить выбор нажатием [ОК]; в открывшемся окне выбрать необходимый пункт.

< Архивные данные Данные за месяц Данные за день

2.6.13.1 Для просмотра данных за месяц необходимо выбрать соответствующий пункт и подтвердить выбор клавишей **[OK].**

В открывшемся окне установить месяц отчетного периода. Изменение календарного номера месяца осуществляется с помощью клавиш [0] - [9], перемещение между цифрами – с помощью клавиш [\leftarrow] [\rightarrow]. Активная цифра выделяется подчеркиванием.

Повторным нажатием клавиши [ОК] на дисплей выводится сообщение:

После обработки информации отображаются следующие архивные данные:

V, M^3 – накопленный объем;

v, м/с – скорость измеряемой среды;

V вос, M^3 – восстановленный объем;

V сум, м³ – суммарный объем;

Т1, С – температура внутреннего термосопротивления;

Т2, С – температура внешнего термосопротивления;

Р, МПа – давление измеряемой среды;

Код НС – код нештатной ситуации;

Тнс п, сек – продолжительность НС.

01.04.12г. 08ч — 01.05.12г. 08ч 1				
V, M ³	V вос, м ³	Vсум		
10499.031	10499.031	327		

Перемещение по списку отображаемых данных осуществляется с помощью клавиш [\leftarrow] [\rightarrow].

Для выхода из подменю необходимо нажать клавишу [С].


2.6.13.2 Пункт «Данные за день» обеспечивает просмотр данных за день с учетом выбранной даты и начала суток. Для просмотра данных необходимо выполнить действия, аналогичные описанным выше в пп.2.6.13.1.

- 2.6.13.3 Пункт «Данные за час» обеспечивает просмотр данных за час с учетом выбранной даты и установленного часа времени, с которого начинается вывод данных. Для просмотра данных необходимо выполнить действия, аналогичные описанным выше в пп.2.6.13.1.
- 2.6.13.4 Пункт «Данные за интервал» обеспечивает просмотр данных за указанный период времени.

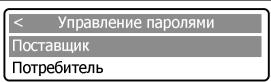
Для просмотра данных за выбранный период времени необходимо выбрать соответствующий пункт и подтвердить выбор клавишей [OK].

В открывшемся окне установить дату и время начала отчетного периода. Установка времени / даты осуществляется с помощью клавиш [0] - [9], перемещение между цифрами – с помощью клавиш [\leftarrow] [\rightarrow]. Активная цифра выделяется подчеркиванием.

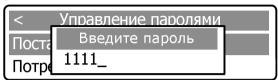
Информация о конце отчетного периода устанавливается после повторного нажатия клавиши **[ОК]**:

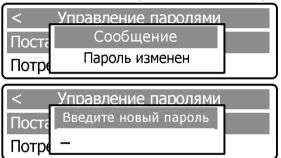
Для выхода из подменю необходимо нажать клавишу [С].

Для вывода на печать данных из пункта меню «Архив» необходимо выбрать соответствующий пункт и подтвердить выбор клавишей «.».


2.6.14 Пункт меню «Пароли» предназначен для изменения четырехзначных паролей, в дальнейшем ограничивающих несанкционированный доступ к настройкам вычислителя и состоит из подпунктов «Поставщик» и «Потребитель».

Изменение паролей выполняется в следующей последовательности:


- Нажатием клавиши [ОК] войти в систему меню;


- Клавишами [↑] [↓], выбрать пункт «Пароли» и подтвердить выбор нажатием клавиши $[\mathbf{OK}]$

- Выбрать с помощью клавиш [↑] [↓] один из подпунктов «Поставщик» или «Потребитель» и подтвердить выбор нажатием [OK], после чего на дисплей выводится запрос о вводе пароля. С помощью клавиш [↑] [↓] необходимо ввести пароль по умолчанию (1111 - «Поставщик» и 2222 - «Потребитель») и подтвердить набор пароля нажатием [ОК].

После подтверждения пароля на дисплей выводится мгновенное сообщение об изменении пароля и следом выводится запрос на ввод нового пароля.

- Ввести новый четырехзначный пароль с помощью клавиш [0] - [9] и подтвердить набор пароля нажатием [ОК].

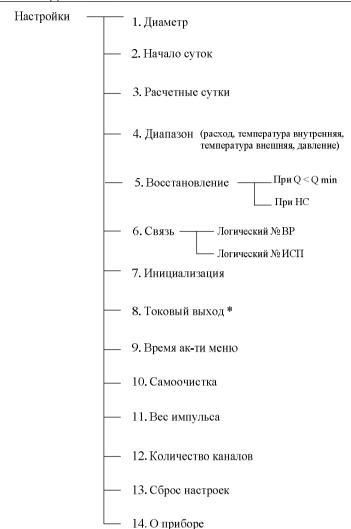
После подтверждения пароля на дисплей выводится мгновенное сообщение об его изменении.

ВНИМАНИЕ! В случае утраты одного из паролей необходимо сообщить заводу-изготовителю серийный номер расходомерного шкафа. Для разблокировки будет сгенерирован и выслан резервный пароль, позволяющий сменить утраченный пароль Поставщика или Потребителя.

2.6.15 Пункт меню «Часы» предназначен для установки времени и даты. Установка времени и даты производится в следующей последовательности:

- Нажатием клавиши [ОК] войти в систему меню

- Выбрать клавишами [↑] [↓] подменю «Часы» и подтвердить выбор нажатием клавиши [ОК].


РАСХОДОМЕР ЖИДКОСТИ РС-2М

В открывшемся окне установить текущую дату и время. Переключение в режим редактирования осуществляется с помощью повторного нажатия клавиши [ОК]. Установка времени / даты осуществляется с помощью клавиш [0] - [9], перемещение между цифрами – с помощью клавиш [\leftarrow] [\rightarrow]. Активная цифра выделяется подчеркиванием.

Для подтверждения введенных значений нажать [ОК]. На дисплей выводится сообщение об изменении параметра.

2.6.16 Пункт меню «Настройки» предназначен для ввода настроечных параметров объекта (рисунок 5).

* - наличие токового выхода в расходомере определяется в зависимости от заказа Рисунок 5

Вход в подменю «Настройки» и дальнейшая работа в нем выполняется в следующей последовательности:

- в системе «ОСНОВНОЕ МЕНЮ» выбрать пункт «Настройки» и подтвердить выбор нажатием [ОК]:
- ввести с помощью клавиш [0] [9] один из паролей («Поставщик» или «Потребитель») и подтвердить набор пароля нажатием [OK],
 - ввести второй пароль и подтвердить набор нажатием [ОК].
- 2.6.16.1 Пункт «Диаметр» предназначен для изменения диаметра измерительного трубопровода в точке расположения блока ИСП.

Установка диаметра выполняется в следующей последовательности:

РАСХОДОМЕР ЖИДКОСТИ РС-2М

- Выбрать клавишами [↑] [↓] пункт «Диаметр» и подтвердить нажатием [OK]:

- изменение параметра осуществляется с помощью повторного нажатия клавиши [ОК], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений – клавишами [0]-[9], перемещение между цифрами – с помощью клавиш [\leftarrow] [\rightarrow].

После завершения редактирования нажать клавишу [ОК], на дисплей выводится сообщение об изменении параметра.

Для возврата в подменю «Настройки» необходимо нажать [C].

2.6.16.2 Пункт «Начало суток» предназначен для установки расчетного часа, исходя из которого, в дальнейшем, формируются отчеты о расходе и контролируемых параметрах ресурсов.

Установка часа начала суток выполняется в следующей последовательности:

- Выбрать клавишами [↑] [⊥] пункт «Начало суток» и подтвердить нажатием [OK]:

- Ввести с помощью клавиш [0] - [9] значение расчетного часа и подтвердить набор нажатием [ОК]:

- Для подтверждения введенных значений нажать [ОК]. На дисплей выводится сообщение об изменении параметра.

В случае некорректного ввода параметра на ЖКИ выводится сообщение:

При этом в памяти вычислителя сохраняется последнее корректное значение. Для возврата в подменю «Настройки» нажать [C], на экране дисплея появляется сообщение об отмене ввода.

Для возврата в подменю «Настройки» необходимо повторно нажать [C].

2.6.16.3 Пункт «Расчетные сутки» предназначен для установки расчетных суток между «Поставщиком» и «Потребителем», исходя из которого, в дальнейшем, формируются отчеты о расходе и контролируемых параметрах ресурсов.

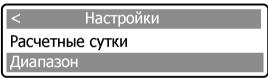
Ввод расчетных суток выполняется в последовательности, аналогичной описанной выше в п. 2.6.16.2.

- 2.6.16.4 Пункт «Диапазон» предназначен для установки значений расхода, температуры и давления и состоит из следующих подпунктов:
 - Расхол
 - Температура внутренняя
 - Температура внешняя
 - Давление

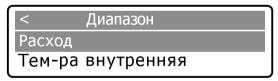
В подпункте меню «Расход» устанавливаются значения:

- «Qmin» нижний предел измерения расхода (устанавливается в соответствии с таблицей 1);
- «Qmax» верхний предел измерения расхода (устанавливается в соответствии с таблицей 1);
- «Qотс» договорное значение расхода, используемое при накоплении архивных данных при расходе меньше Qmin;
- «Qдог» договорное значение, используемое в случае выхода измеряемой величины за пределы Qmin, Qmax.

В подпункте меню «Температура внутренняя» устанавливаются значения:


- «T1min» нижний предел измерения температуры внутреннего термосопротивления:
- «T1max» верхний предел измерения температуры внугреннего термосопротивления;
- «Т1дог» договорное значение, используемое в случае выхода измеряемой величины за пределы T1min, T1max.

В подпункте меню «Температура внешняя» устанавливаются значения:


- «T2min» нижний предел измерения температуры внешнего термосопротивления:
- «T2max» верхний предел измерения температуры внешнего термосопротивления:
- «Т2дог» договорное значение, используемое в случае выхода измеряемой величины за пределы T2min, T2max.

В подпункте меню «Давление» устанавливаются значения:

- «Pmin» минимальное значение давления для установленного датчика давления;
- «Pmax» максимальное значение давления для установленного датчика давления;
- «Рдог» договорное значение давления, используемое в случае выхода измеряемой величины за пределы Pmin, Pmax.
- П.1. Ввод значений параметров по расходу выполняется в следующей последовательности:
- Выбрать клавишами [↑] [↓] пункт «Диапазон» и подтвердить выбор нажатием [ОК]:

- Выбрать подпункт «Расход» и подтвердить выбор нажатием [OK]:

-Выбрать подпункт «Qmin» и подтвердить выбор нажатием [OK]:

- Переключение в режим редактирования осуществляется с помощью повторного нажатия клавиши [ОК]. Ввести с помощью клавиш [0] - [9] значение расхода и подтвердить нажатием [ОК]:

Для ввода значений следующих параметров аналогично повторить описанные выше действия.

ВНИМАНИЕ!

1. Параметр отсечки Оотс предназначен для исключения явления «самохода» при отсутствии расхода измеряемой среды.

Оотс выбирается исходя из минимального предела чувствительности прибора и по значению должно удовлетворять условию:

$$Q_{\min} / 2 \le Q_{omc} < Q_{\min}$$
.

2. Значение отсечки Оотс используется при накоплении архивных данных. При мгновенном значении расхода меньше значения Qmin, но больше Оотс, в архив записывается значение Qmin, т.е.

при
$$Q_{omc} \leq Q_{{\scriptscriptstyle M2H}} \leq Q_{\min}$$
 , $Q_{{\scriptscriptstyle M2H}} = Q_{\min}$.

3. При значении мгновенного расхода менее значения отсечки Оотс в архив записывается значение Омгн равное 0, т.е.

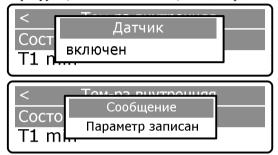
при
$$Q_{_{MPH}} < Q_{_{OMC}}$$
, $Q_{_{MPH}} = 0$

4. Значение Одог устанавливается по договоренности между «Поставщиком» и «Потребителем», соблюдая условие:

$$Q_{\partial \alpha z} \leq Q_{\max}$$
,

и используется для заполнения архива при возникновении нештатных ситуаций.

- П.2. Ввод значений параметров по температуре внутреннего термосопротивления выполняется в следующей последовательности:
- Выбрать клавишами [↑] [↓] пункт «Диапазон» и подтвердить выбор нажатием [ОК]:


- Выбрать подпункт «Тем-ра внутренняя» и подтвердить выбор нажатием [OK]:

-Выбрать подпункт «Состояние датчика» и подтвердить выбор нажатием [OK]:

- Переключение в режим редактирования осуществляется с помощью повторного нажатия клавиши [OK]. С помощью клавиш $[\to]$ - $[\leftarrow]$ осуществить выбор состояния датчика температуры (включен/отключен) и подтвердить нажатием [ОК]:

Переход в режим ввода отрицательных значений температуры осуществляется однократным нажатием клавиши F2.

Для ввода значений следующих параметров аналогично повторить описанные выше действия в п.1 (2.6.16.4).

- П.З. Ввод значений параметров по температуре внешнего термосопротивления выполняется аналогично вводу параметров по температуре внутреннего термосопротивления, представленного в п.2 (2.6.16.4).
- П.4. Ввод значений параметров по давлению, используемого датчика давления, выполняется аналогично вводу параметров по температуре внутреннего термосопротивления, представленного в п.2 (2.6.16.4).

В случае набора некорректного значения, в памяти сохраняется последнее корректное значение.

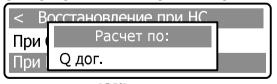
- 2.6.16.5 Пункт «Восстановление» предназначен для установки договорных значений:
 - при Q < Qmin,
 - при НС.

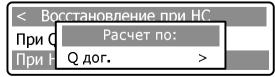

Ввод значений выполняется в следующей последовательности:

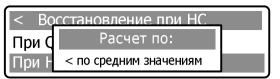
- в подменю «Настройки» выбрать пункт «Восстановление» и подтвердить выбор нажатием [ОК]

1. Выбрать параметр «При Q<Q min» и подтвердить выбор нажатием **[ОК]**

ВНИМАНИЕ! Значение параметра «При Q<Qmin» должно быть меньше или равно «Qmin».


- изменение параметра осуществляется с помощью повторного нажатия клавиши [OK], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений – клавишами [0]-[9], перемещение между цифрами – с помощью клавиш [\leftarrow] [\rightarrow].


После завершения редактирования нажать клавишу [ОК], на дисплей выводится сообщение об изменении параметра.



1. Выбрать параметр «при НС» и подтвердить выбор нажатием [ОК]

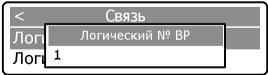
Повторным нажатием клавиши [OK] активизируется режим выбора варианта подставляемого значения расхода при нештатной ситуации: Q дог. или Q ср.

Клавишами [\leftarrow] [\rightarrow] ввести выбранный вариант значения подставляемого расхода и подтвердить нажатием [OK]. На дисплее появится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

ПРИМЕЧАНИЕ: При выборе Qcp, в архив будет записываться среднее значение за прошедший час, отработанный без нештатных ситуаций. Установка значения Qдог описана в пункте «Диапазон».

2.6.16.6 Пункт «Связь» предназначен для настройки параметров связи с ИСП и АСУТП.


В подменю «Настройки» выбрать пункт «Связь» и подтвердить нажатием [ОК]:

Клавишами [↑] [↓] выбрать параметр «Логический № ВР» и подтвердить нажатием [ОК].

Ввод параметра осуществляется с помощью повторного нажатия клавиши [OK], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений – клавишами [0]-[9], перемещение между цифрами – с помощью клавиш [\leftarrow] [\rightarrow].

Нажатием клавиши **[ОК]** подтвердить выбранное значение, на дисплей выводится сообщение об изменении параметра. Значения логических номеров ВР и ИСП должны быть в пределах от 1 до 255. По умолчанию, логический №ВР равен 1.

Для выхода из подменю необходимо нажать клавишу [С].

При выборе параметра «**Логический № ИСП**» необходимо выполнить действия, аналогичные описанным выше при вводе параметра «**Логический № ВР».** По умолчанию, логический **№**ИСП равен 1.

2.6.16.7 Пункт «**Инициализация**» предназначен для очистки памяти архива и сброса счетчиков на 0.

Очистка памяти архива и сброс счетчиков на 0 выполняется в следующей последовательности:

- в подменю «Настройки» выбрать пункт «Инициализация» и подтвердить нажатием [ОК],

- в открывшемся окне необходимо подтвердить либо опровергнуть решение об инициализации

Согласие на инициализацию необходимо подтвердить клавишей **[ОК]**. После нажатия клавиши **[ОК]** произойдет форматирование памяти вычислителя и сброс архивных значений:

ВНИМАНИЕ! Форматирование производится не более 5 мин. До завершения форматирования питание не отключать!

После завершения форматирования произойдет автоматический выход в подменю «Настройки».

При отказе от инициализации необходимо нажать [C]. Произойдет автоматический возврат в подменю «Настройки».

2.6.16.8 Пункт «**Токовый выход»** предназначен для установки параметров токового выхода и состоит из следующих подпунктов:

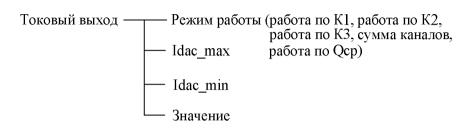


Рисунок 6

В подменю «**Настройки**» выбрать пункт «**Токовый выход**» и подтвердить нажатием [**OK**].

Подпункт «Режим работы» состоит из пунктов:


- «работа по К1» (работа по каналу 1);
- «работа по K2» (работа по каналу 2);
- «работа по К3» (работа по каналу 3);
- «сумма каналов» (работа по сумме каналов);
- «работа по Qcp» (работа по среднему значению каналов).

В пункте «Токовый выход» выбрать параметр «Режим работы» и подтвердить нажатием [ОК].

< Токовый выход
Реж Режим работы:
Idac работа по К1

Изменение режима работы осуществляется с помощью повторного нажатия клавиши **[OK]:**

Перемещение между режимами – с помощью клавиш [\leftarrow] [\rightarrow]:

Нажатием клавиши **[ОК]** подтвердить выбранный режим, на дисплей выводится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

«Idac_max» и «Idac_min» – калибровочные коэффициенты (мА или А), «Значение» – осуществляет ввод значения для проверки токового выхода (мА). Ввод параметров осуществляется аналогично процессу, описанному в п.2.6.16.4 (при вводе параметра Qmin).


2.6.16.10 Пункт «**Время ак-ти меню**» предназначен для установки времени активности меню (в секундах), по истечении которого происходит переход из пунктов меню на главный экран.

В подменю **«Настройки»** выбрать пункт **«Время откл. ЖКИ»** и подтвердить нажатием **[ОК]:**

Ввод параметра осуществляется с помощью повторного нажатия клавиши [ОК], после чего активная цифра выделяется подчеркиванием (режим редактирова-

ния). Изменение значений – клавишами [0]-[9], перемещение между цифрами – с помощью клавиш [\leftarrow] [\rightarrow].

Нажатием клавиши [ОК] подтвердить выбранное значение, на дисплей выводится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

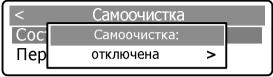
2.6.16.11 Пункт «Самоочистка» предназначен для настройки параметров функционирования системы самоочистки измерительных электродов расходомера.

Настройка параметров системы самоочистки выполняется в следующей последовательности:

В системе **«МЕНЮ»** выбрать пункт **«Настройки»** и подтвердить выбор нажатием **[ОК]**. Клавишами [\uparrow] [\downarrow] выбрать параметр **«Самоочистка»** и подтвердить нажатием **[ОК]**.

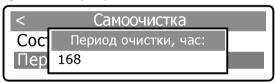
Пункт меню «Самоочистка» состоит из следующих подпунктов:

- Состояние (принудительное включение самоочистки);
- **Период очистки** (время в часах, через которое будет включаться самоочистка).
- 1) Для настройки состояния самоочистки расходомеров необходимо выбрать пункт «Состояние» и подтвердить набор нажатием [ОК].



В отображаемом окне с помощью нажатия клавиш **[OK]** и [\leftarrow] [\rightarrow] осуществляется выбор состояния самоочистки.

НКИЯ.407212.001 РЭ



Нажатием клавиши [OK] подтвердить выбранный параметр состояния, на дисплей выводится сообщение об изменении настроек. Для выхода в подпункт «Состояние» нажать [C].

2) Для смены периодичности выполнения самоочистки необходимо выбрать пункт «Период очистки» и подтвердить набор нажатием [ОК].

В появившемся окне ввести период времени, через который будет производиться самоочистка прибора в часах (максимальное значение для ввода: 100000 часов). Подтвердить набор нажатием [ОК]:

Для выхода в подпункт «Период очистки» нажать [С].

2.6.16.12 Пункт «**Вес импульса**» предназначен для установки параметра веса импульса при подключении оборудования с импульсным выходом.

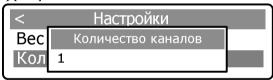
Настройка веса импульса выполняется в следующей последовательности:

В системе «МЕНЮ» выбрать пункт «Настройки» и подтвердить выбор нажатием [ОК]. Клавишами [↑] [↓] выбрать параметр «Вес импульса» и подтвердить нажатием [ОК].

Ввод параметра осуществляется с помощью повторного нажатия клавиши [OK], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений — клавишами [0]-[9], перемещение между цифрами — с помощью клавиш $[\leftarrow][\rightarrow]$.

Нажатием клавиши [ОК] подтвердить введенное значение, на дисплей выводится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].


2.6.16.13 Пункт **«Количество каналов»** предназначен для установки количества каналов, используемых в расходомере.

Настройка количества каналов выполняется в следующей последовательности:

В системе «МЕНЮ» выбрать пункт «Настройки» и подтвердить выбор нажатием [OK]. Клавишами [\uparrow] [\downarrow] выбрать параметр «Количество каналов» и подтвердить нажатием [OK].

Ввод параметра осуществляется с помощью повторного нажатия клавиши [OK], после чего активная цифра выделяется подчеркиванием (режим редактирования). Изменение значений — клавишами [0]-[9], перемещение между цифрами — с помощью клавиш [\leftarrow] [\rightarrow].

Нажатием клавиши [ОК] подтвердить введенное значение, на дисплей выводится сообщение об изменении параметра.

Для выхода из подменю необходимо нажать клавишу [С].

2.6.16.14 Пункт «**Сброс настроек**» предназначен для сброса параметров, установленных в расходомере, на настройки по умолчанию.

Сброс настроек выполняется в следующей последовательности:

- в подменю «Настройки» выбрать пункт «Сброс настроек» и подтвердить нажатием [ОК],

- в открывшемся окне необходимо подтвердить либо опровергнуть решение о сбросе настроек:

Согласие на сброс необходимо подтвердить клавишей [ОК]. После нажатия клавиши [ОК] произойдет сброс настроек, установленных ранее в расходомере, и переход на настройки по умолчанию:

Omin=0.043

Omax=40856

Ootc=0.25* Omin

Qdog=360

Odog min=Omin

Pmin=0

Pmax=2.5

Pdog=0.3

Vmin=0

Vmax=100

Vdog=100

T1min=-50

T1max=200

T1dog=10

T2min=-50

T2max=200

T2dog=10

Сетевой адрес ИСП=N+2, где N – номер канала, начиная с «0»

Начало суток=10

Расчетные сутки=1

Логический номер ВР=1

Количество каналов=1

Пароль поставщика=1111

Пароль потребителя=2222

Время активности меню=300

При отказе от сброса настроек необходимо нажать [С]. Произойдет автоматический возврат в подменю «Настройки».

- 2.6.16.14 Пункт «О приборе» предназначен для просмотра сведений о расходомере и состоит из следующих подпунктов.
 - Идентификационное наименование ПО
 - Номер версии ПО
 - Цифровой идентификатор ПО
 - Серийный номер РШ
 - Серийный номер ИСП

Просмотр сведений выполняется в следующей последовательности:

- в подменю «Настройки» выбрать пункт «О приборе» и подтвердить нажатием [ОК],

- клавишами [↑] [↓] выбрать необходимый подпункт и подтвердить нажатием [ОК],
 - просмотр всех сведений осуществляется с помощью клавиш [↑] [↓]. Для выхода из подменю необходимо нажать клавишу [С].

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ

3.1 Общие указания

- 3.1.1 Техническое обслуживание является составной частью эксплуатации расходомера и направлено на поддержание его в исправном состоянии и постоянной готовности к применению по назначению.
 - 3.1.2 Виды технического обслуживания расходомера:
 - Техническое обслуживание с периодическим контролем;
 - Техническое обслуживание перед проведением периодической поверки.
- 3.1.3 При техническом обслуживании должна быть обеспечена безопасность персонала. Условия работы, срочность ее выполнения и другие причины не могут служить основанием для нарушения мер безопасности.
- 3.1.4 Ответственность за надлежащее состояние и исправность узла учета воды (сточных вод), а также за своевременную поверку средств измерений, установленных на узлах учета, несет владелец узлов учета (абонент). (Правила пользования системами коммунального водоснабжения и канализации в РФ, Кодекс об административных правонарушениях).

3.2 Порядок проведения технического обслуживания и ремонта

- 3.2.1 Техническое обслуживание с периодическим контролем вид технического обслуживания, при котором контроль технического состояния проводится с установленной нормативно-технической документацией периодичностью и объемом, а объем остальных операций определяется техническим состоянием изделия в момент начала технического обслуживания.
- 3.2.2 Контроль технического состояния расходомера проводится владельцем узла учета, на месте эксплуатации расходомера с периодичностью не реже 1 раза в месяц и включает проверку:
 - сохранности пломб;
 - наличия и прочности крепления составных блоков расходомера;
 - отсутствия обрыва и (или) повреждения изоляции соединительного кабеля;
 - отсутствия обрыва заземляющего провода;
 - надежности присоединения соединительного кабеля;
- надежности крепления составных частей прибора и заземляющего болтового соединения;
- ullet отсутствия вмятин и видимых механических повреждений, а также пыли и грязи на составных частях расходомера;
 - индикации измеряемых параметров;
 - соответствия текущей даты и времени;
 - ведения архивов;
 - времени наработки расходомера;
 - наличия нештатных ситуаций и времени их возникновения;
 - распечаток почасовых и посуточных отчетов в случае необходимости;
 - работы блока питания по светодиодным индикаторам.
- 3.2.3 Для ухода за поверхностью составных частей расходомера допускается использовать мыльный раствор и другие бытовые не агрессивные моющие средства.

- 3.2.4 Периодичность проведения технического обслуживания по результатам контроля технического состояния зависит от условий эксплуатации и качества (чистоты) измеряемой среды и определяется потребителем, эксплуатирующим узел
- 3.2.5 Техническое обслуживание по результатам контроля технического состояния выполняется специализированной организацией на договорных условиях и включает в себя:
 - демонтаж ИСП;

РАСХОДОМЕР ЖИДКОСТИ РС-2М

– проверку целостности и степени загрязнения ПИП ИСП;

учета по согласованию с поставщиком, но не реже 1 раза в три месяца.

- очистку ПИП ИСП ветошью от загрязнений;
- проверку и при необходимости замену уплотнений на конструкции ввода ИСП;
 - протяжку резьбовых соединений на конструкции ввода ИСП;
- проверку соединительных разъемов и кабелей, удаление продуктов окисления;
 - проверку напряжения питания ИСП;
- проверку и обслуживание аккумуляторной батареи (при непригодности выдача рекомендаций по замене);
 - проверку контролируемых параметров ВР;
 - проверку работы блока питания.
- 3.2.6 Техническое обслуживание перед проведением периодической поверки выполняется предприятием-изготовителем или уполномоченной им организацией и включает в себя комплекс мероприятий по детальной диагностике расходомера, очистке ИСП от загрязнений, регулировке электрических параметров, обновлению программного обеспечения ВР, замене аккумуляторной батареи.
- 3.2.7 Все неисправности, выявленные в процессе контроля технического состояния и технического обслуживания, должны быть устранены. Запрещается выполнять последующие операции до устранения обнаруженных неисправностей.
- 3.2.8 Приборы с не устраненными неисправностями бракуют и направляют в ремонт.
- 3.2.9 Ремонт расходомера выполняется предприятием-изготовителем или уполномоченной им организацией. Гарантийный срок эксплуатации расходомера после проведения ремонта составляет 6 месяцев.

4 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 4.1 Маркировка расходомера соответствует требованиям ГОСТ 26828 и сохраняется в течение всего срока службы расходомера при соблюдении эксплуатационных ограничений п. 2.1.
 - 4.2 На корпусе ИСП нанесена аппликация, содержащая:
 - наименование (тип) расходомера;
 - товарный знак предприятия-изготовителя;
 - указатель направления потока;
 - заводской номер расходомера и дату его изготовления;
 - диапазон рабочих температур: 50 ...+70 0 C;
 - диапазон температур измеряемой среды: $0 \dots +150 \, {}^{0}\mathrm{C}$;
 - 4.3 На корпусе РШ нанесена аппликация, содержащая:

РАСХОДОМЕР ЖИДКОСТИ РС-2М

- наименование (тип) расходомера;
- товарный знак предприятия-изготовителя;
- знак утверждения типа средств измерений;
- заводской номер расходомера и дату его изготовления;
- диапазон рабочих температур: +5 ...+50 °C.
- 4.4 Пломбирование расходомера производится заводской пломбой в местах углубления под головки винтов согласно приложениям Б и В.

5 ТРАНСПОРТИРОВАНИЕ

- 5.1 Общие требования к транспортированию расходомеров должны соответствовать ГОСТ 12997.
- 5.2 Упакованные расходомеры должны транспортироваться в закрытых транспортных средствах всеми видами транспорта, кроме морского, в том числе и воздушным, в отапливаемых герметизированных отсеках, в соответствии с правилами перевозок грузов, действующими на каждом виде транспорта.
- 5.3 Условия транспортирования в части воздействия климатических факторов должны соответствовать группе условий 5 (ОЖ4) по ГОСТ 15150 для крытых транспортных средств.
- 5.4 Условия транспортирования в части механических воздействий должны соответствовать группе N2 по ГОСТ 12997.

6 ХРАНЕНИЕ

- 6.1 Упакованные расходомеры должны храниться в складских помещениях грузоотправителя и (или) грузополучателя, обеспечивающих сохранность расходомеров от механических повреждений, загрязнения и воздействия агрессивных сред, в условиях хранения 3 по ГОСТ 15150.
- 6.2 Допускается хранение расходомеров в транспортной таре до 6 месяцев. При хранении более 6 месяцев расходомеры должны быть освобождены от транспортной тары и хранится в условиях хранения 1 по ГОСТ 15150. Общие требования к хранению расходомеров в отапливаемом хранилище по ГОСТ 12997.
- 6.3 Эксплуатационная и товаросопроводительная документация вкладываются в полиэтиленовый пакет и укладываются в упаковочную тару.

7 УТИЛИЗАЦИЯ

- 7.1 Все материалы и комплектующие изделия, кроме аккумуляторной батареи (АКБ), использованные при изготовлении расходомера, как при эксплуатации в течение срока службы, так и по истечении ресурса, не представляют опасности для здоровья человека, производственных, складских помещений и окружающей среды.
- 7.2 Утилизация вышедших из строя составных частей расходомера может производиться любым доступным потребителю способом. Утилизация АКБ осуществляется специализированной организацией.

8 РЕСУРСЫ, СРОКИ СЛУЖБЫ РАСХОЛОМЕРА

- 8.1 Средняя наработка на отказ не менее 10 000 часов.
- 8.2 Полный срок службы не менее 10 лет.
- 8.3 Срок службы встроенной аккумуляторной батареи 3...5 лет.
- 8.4 Сохранение информации об измеряемых параметрах за 365 последних суток.
- 8.5 Поддержание работоспособности расходомера при отключенном питании - не менее 8 часов.
- 8.6 Сохранение информации об измеряемых параметрах при отключенном питании расходомера – не менее 40 000 часов.

9 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 9.1 Предприятие-изготовитель гарантирует соответствие расходомера требованиям ТУ в течение 12 месяцев от даты ввода расходомера в эксплуатацию, при соблюдении эксплуатирующей организацией условий эксплуатации, хранения, транспортирования и монтажа в соответствии с эксплуатационной документацией, но не более 18 месяцев от даты продажи.
- 9.2 В пределах гарантийного срока эксплуатации допускается хранение изделия в упаковке предприятия-изготовителя в соответствии с требованиями группы Л ГОСТ15150 в течение не более 6 месяцев от даты продажи.
- 9.3 Предприятие-изготовитель несет гарантийные обязательства при выполнении следующих условий:
- не нарушены пломбы предприятия-изготовителя (регионального представителя) на расходомере, а составные части прибора не имеют внешних повреждений;
- монтажные и пуско-наладочные работы выполнены НПО «Турбулентность-ДОН» или специально уполномоченной организацией;
- наличие документа «Руководство по эксплуатации и формуляр. Расходомеры жидкости РС-2М НКИЯ.407212.001 РЭ» с отметками ОТК изготовителя и в разделе «Сведения о вводе в эксплуатацию».
- 9.4 Гарантийное обслуживание осуществляется через организацию, осуществившую продажу и монтаж расходомера.
- 9.5 Предприятие-изготовитель не несет гарантийных обязательств в случае выхода из строя расходомера по причинам:
 - не соблюдения п. 2.1. настоящего РЭ;
- в результате форс-мажорных обстоятельств, вызванных стихией или пожаром (в том числе: грозовой разряд, скачки напряжения по питающей сети 220 В), а так же поломка ИСП, связанная с присутствием в трубопроводе инородных веществ.
 - 9.6 Предприятие-изготовитель не несет ответственности:
- за ущерб, причиненный другому имуществу любыми дефектами данного изделия;
 - за претензии третьих лиц к Потребителю данного изделия;
 - за потерю прибыли и другие убытки, причиненные изделием;
- за несовместимость параметров диапазона работы изделия с параметрами диапазона измерения с изделиями иных Производителей, выбранных Потребителем.

10 ПОСЛЕГАРАНТИЙНОЕ ОБСЛУЖИВАНИЕ

- 10.1 По вопросам поверки, ремонта расходомера, а также приобретения дополнительного оборудования обращаться в региональное представительство или к предприятию-изготовителю НПО «Турбулентность-Дон»
- 10.2 Обо всех недостатках в работе и конструкции прибора, замечаниях и предложениях по содержанию эксплуатационной документации, просим сообщать по вышеуказанному адресу.

РАСХОДОМЕР ЖИДКОСТИ РС-2М

11 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Расходомер жид	дкости РС-2М	[
заводской №	B	комплекте:	
Измеритель скорости пот	ока (ИСП1)	зав. №	
Измеритель скорости пот	ока (ИСП2)	зав. №	
Измеритель скорости пот	ока (ИСПЗ)	зав. №	
Расходомерный шкаф (PI	II)	зав. №	
Длина стержня ИСП1 L _{ис}	сп, мм		
Длина стержня ИСП2 L _{ис}	сп, мм		
Длина стержня ИСП3 L _{ис}	сп, мм		
изготовлен и принят в со домеры жидкости РС-2 эксплуатации.			
МП			
Контролёр ОТК			
	подпись	инициалы,	фамилия

47

число, месяц, год

12 СВЕДЕНИЯ О ПОВЕРКЕ РАСХОДОМЕРА

	12.1 Первичная г	оверка проведена в Н	IПО «Турб	булентность-ДОН».	
	Расходомер жидкости РС-2М заводской №				
	с техническими у	арактеристиками:			
	Диапазон измерений скоростей потоков жидкости, м/с				
	$ m V_{min}$ $ m V_{max}$		V _{max}		
	признан годным для	использования.			
Пов	ерительное клеймо				
Пов	еритель				
		подпись	_	инициалы, фамилия	
	число, месяц, год				

12.2 Периодические поверки

Оттиск	Дата следующей	Подпись	Расшифровка
клейма	поверки	поверителя	подписи
	клейма		

13 СВЕДЕНИЯ О ВВОДЕ В ЭКСПЛУАТАЦИЮ Без заполнения данного раздела гарантии изготовителя не сохраняются

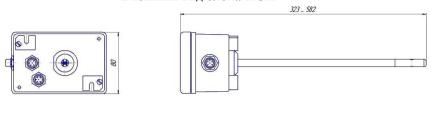
Расходомер жидкости РС-2М завод	цской №	в комплекте:
Измеритель скорости потока (ИСП1)	зав. №	
Измеритель скорости потока (ИСП2)	зав. №	
Измеритель скорости потока (ИСП3)	зав. №	
Расходомерный шкаф (РШ)	зав. №	
Длина стержня ИСП1 L _{ИСП} , мм		
Длина стержня ИСП2 $L_{\text{ИСП}}$, мм		
Длина стержня ИСП3 $L_{\text{ИСП}}$, мм		
введен в эксплуатацию «»		
наименование м	ионтажной организации	
Представитель монтажной организации	М.П.	
поді	пись	инициалы, фамилия

14 СВЕДЕНИЯ О ПЕРИОДИЧЕСКИХ ПОВЕРКАХ

эдомп	21 7(11						7212.0	
Расшифровка росписи								
Подпись повери- теля								
Дата следующей поверки								
Оттиск клейма								
Дата поверки								

							_
						Дата	
						Неисправность	15 УЧЕТ ТЕХНИЧЕ
						Вид произведенных работ	15 УЧЕТ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА
						Должность, ФИО исполнителя	

Должность, ФИО исполнителя							
Вид произведенных работ							
Неисправность							
Дата							


РАСХОДОМЕР ЖИДКОСТИ РС-2М

16 ОСОБЫЕ ОТМЕТКИ

РАСХОДОМЕР ЖИДКОСТИ РС-2М

приложение б

Внешний вид блока ИСП

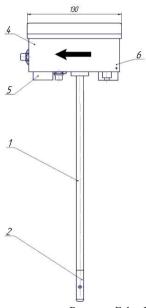


Рисунок Б.1 – Внешний вид блока ИСП (с разъемами LTW)

Примечание: В зависимости от заказа типы, количество и расположение разъемов могут отличаться от указанных на рисунке Б.1.

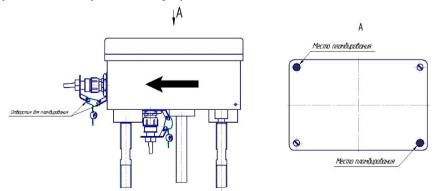
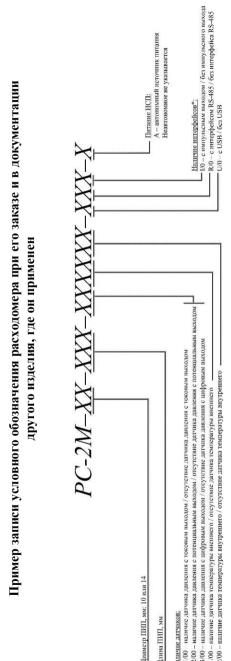
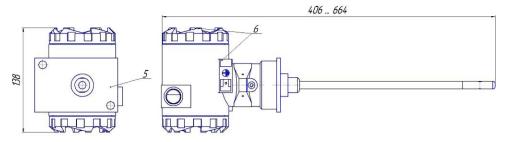




Рисунок Б.1.1 – Схема пломбирования

другого изделия, где он применен приложение а

в маркировке на корпусе расходомера данные параметры не прописываются.

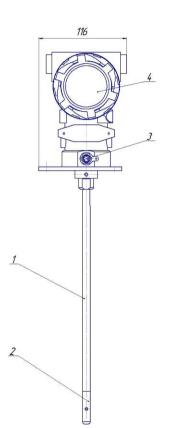


Рисунок Б.2 – Внешний вид блока ИСП с индикацией

Поз.	Наименование	Кол.	Примечание
1	Стержень ИСП	1	
2	Чувствительный элемент (ПИП)	1	
3	Разъем герметичный	1	
4	Герметизированный корпус блока ИСП	1	
5	Кронштейн для крепления блока ИСП	2	
6	Место под пломбу	1	

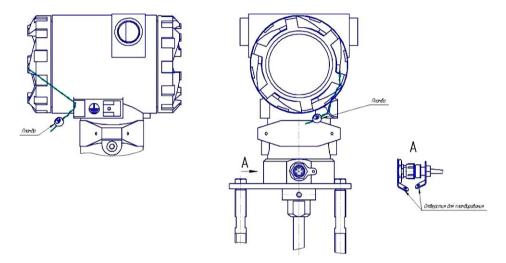


Рисунок Б.2.1 – Схема пломбирования

60

ПРИЛОЖЕНИЕ В Внешний вид расходомерного шкафа

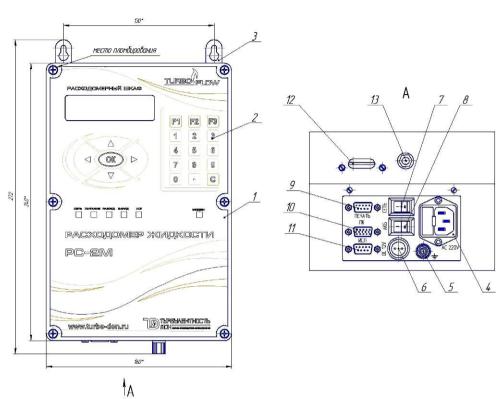


Рисунок В.1 – Внешний вид расходомерного шкафа для одноканального расходомера

Поз.	Наименование	Кол.	Примечание
1	Корпус РШ	1	
2	Клавиатура	1	
3	Петля	2	
4	Разъем для подключения питания 220 B	1	
5	Клемма заземления	1	
6	Разъем для внешнего аккумулятора 12 B	1	
7	Выключатель питания 220 В	1	
8	Выключатель внутреннего аккумулятора	1	
9	Разъем для подключения принтера	1	
10	Разъем для подключения ПК или АСУ	1	
11	Разъем для подключения ИСП	1	
12	Слот для sim-карты	1	В зависимости от
13	Разъем для подключения GSM антенны	1	заказа

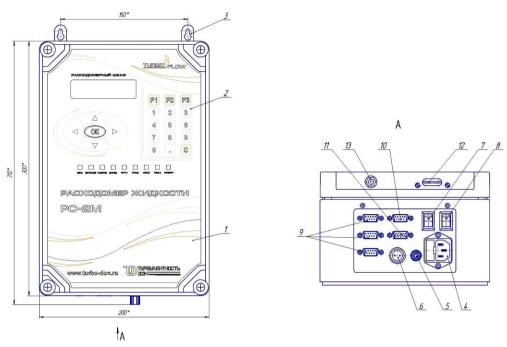
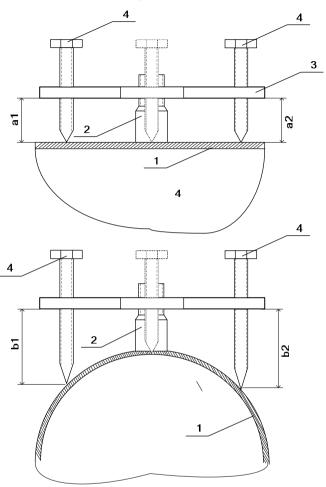
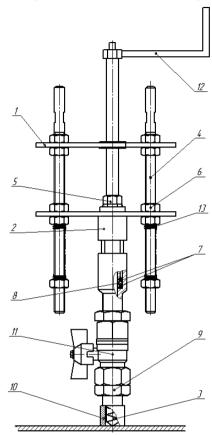



Рисунок В.2 – Внешний вид расходомерного шкафа для многоканального расходомера

Поз.	Наименование	Кол.	Примечание
1	Корпус РШ	1	
2	Клавиатура	1	
3	Петля	2	
4	Разъем для подключения питания 220 B	1	
5	Клемма заземления	1	
6	Разъем питания 12 B	1	
7	Выключатель питания 220 В	1	
8	Выключатель питания 12 В	1	
9	Разъем для подключения ИСП1ИСП3	1	
10	Разъем для подключения принтера	1	
11	Разъем для подключения ПК или АСУ	1	
12	Слот для sim-карты	1	В зависимости от
13	Разъем для подключения GSM антенны	1	заказа


ПРИЛОЖЕНИЕ Г Использование рейки КБА.9.000.000

Поз.	Наименование	Кол.	Примечание
1	Трубопровод	1	
2	Нижний патрубок	1	
3	Рейка КБА.9.000.000	1	
4	Контрольные (установочные) винты	4	

Примечание: a1 = a2 и b1 = b2

ПРИЛОЖЕНИЕ Д Монтаж приспособления для сухой врезки ПСВГ

Поз.	Наименование	Кол.	Примечание
1	Площадка	1	
2	Втулка	1	
3	Сверло	1	
4	Шпилька	2	
5	Втулка латунная	1	
6	Гайка	10	
7	Уплотнение (металл.)	2	
8	Уплотнение (полиуретан.)	1	
9	Контргайка	2	
10	Патрубок	1	
11	Кран шаровой	1	
12	Рычаг	1	
13	Пружина	2	

НКИЯ.407212.001 РЭ

ПРИЛОЖЕНИЕ Е Конструкция ввода

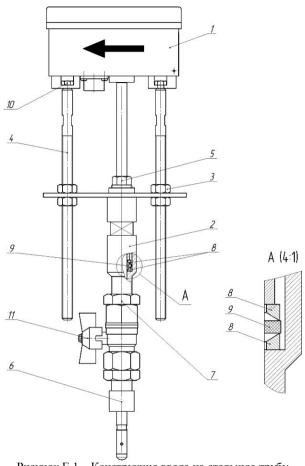


Рисунок Е.1 – Конструкция ввода на стальную трубу

Поз.	Наименование	Кол.	Примечание
1	Измеритель скорости потока	1	
2	Площадка с втулкой	1	
3	Гайка	4	
4	Шпилька	2	
5	Втулка латунная	1	
6	Патрубок	1	
7	Контргайка	2	
8	Уплотнение (металл.)	2	
9	Уплотнение (полиуретан.)	1	
10	Винт М6	2	
11	Кран шаровой	1	

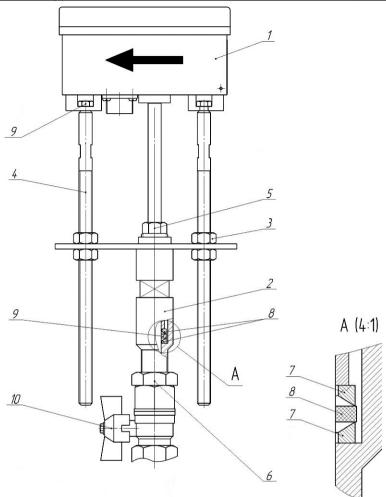


Рисунок Е.2 – Конструкция ввода на пластиковую трубу

Поз.	Наименование	Кол.	Примечание
1	Измеритель скорости потока	1	
2	Площадка с втулкой	1	
3	Гайка	4	
4	Шпилька	2	
5	Втулка латунная	1	
6	Контргайка	1	
7	Уплотнение (металл.)	2	
8	Уплотнение (полиуретан.)	2	
9	Винт М6	1	
10	Кран шаровой	2	

приложение ж Монтаж расходомера РС-2М на трубопровод

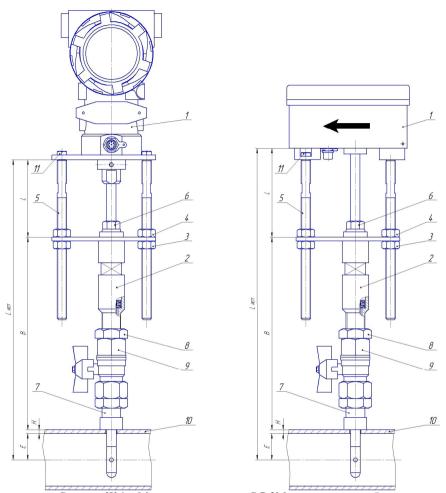


Рисунок Ж.1 – Монтаж расходомера РС-2М на стальную трубу

	T
Поз.	Наименование
1	Корпус блока ИСП
2	Площадка базовая
3,4	Гайка
5	Шпилька
6	Втулка уплотнительная
7	Патрубок
8	Контргайка
9	Кран шаровой
10	Трубопровод
11	Болт М6

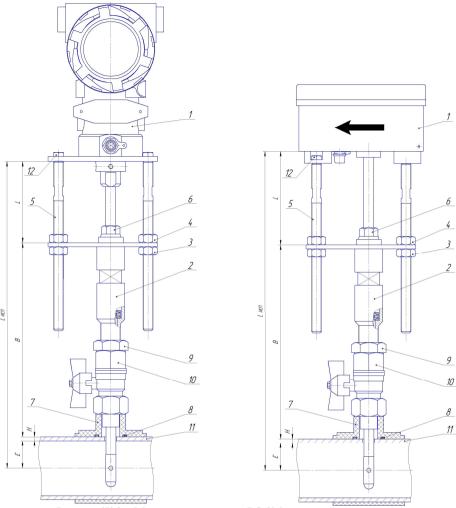
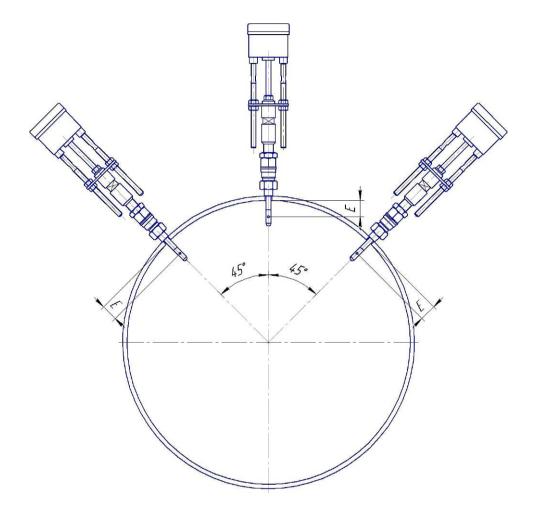



Рисунок Ж.2 – Монтаж расходомера РС-2М на пластиковую трубу

Поз.	Наименование
1	Корпус блока ИСП
2	Площадка базовая
3,4	Гайка
5	Шпилька
6	Втулка уплотнительная
7	Седелка
8	Уплотнительная прокладка
9	Контргайка
10	Кран шаровой
11	Трубопровод
12	Болт М6

ПРИЛОЖЕНИЕ И Монтаж на трубопровод под разным углом

ПРИЛОЖЕНИЕ К Схемы подключений расходомера с одним ИСП

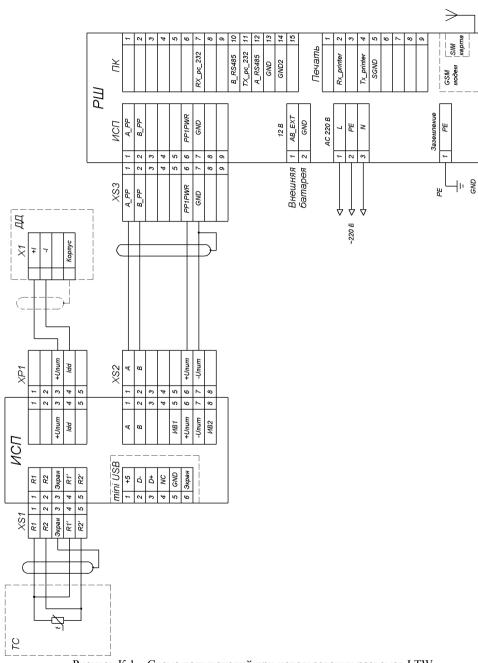
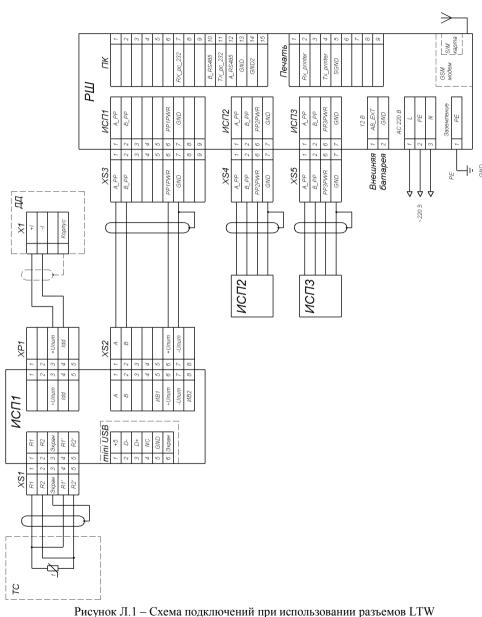



Рисунок К.1 – Схема подключений при использовании разъемов LTW

70

приложение л Схемы подключений расходомера с тремя ИСП

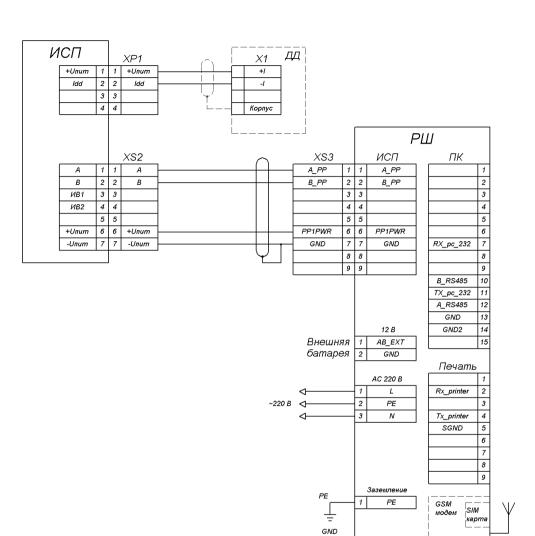


Рисунок К.2 – Схема подключений при использовании разъемов 2РМ

Примечание: Элементы, выделенные штриховой линией, могут отсутствовать (определяется в зависимости от заказа).

приложение м

Схемы распайки кабеля для соединения ИСП и РШ

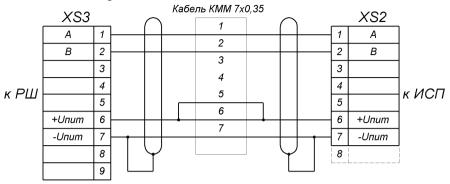


Рисунок М.1 – Схема кабеля при использовании КММ 7x0,35 Кабель КСПвЭП 8x2x0.4

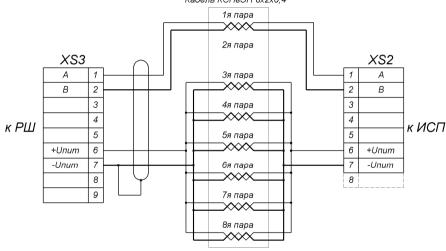


Рисунок М.2 – Схема кабеля при использовании КСПвЭП 8x2x0,4

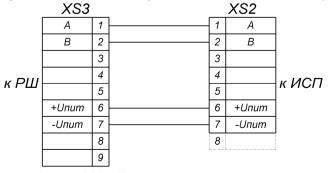


Рисунок М.3 – Проверочный системный кабель

Примечание: Элементы, выделенные штриховой линией, могут отсутствовать (определяется в зависимости от заказа).

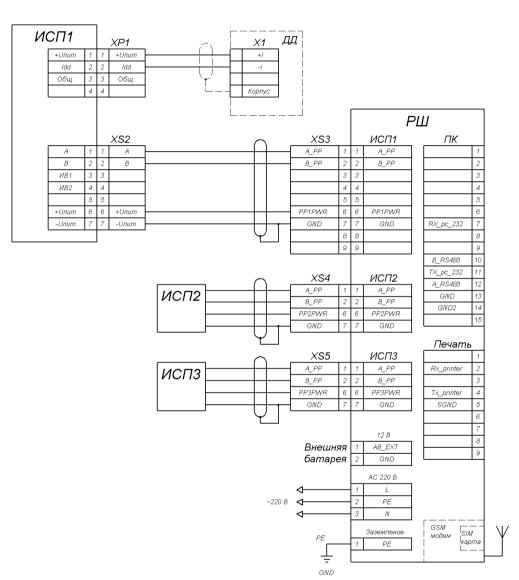


Рисунок Л.2 – Схема подключений при использовании разъемов 2РМ

Примечание: Элементы, выделенные штриховой линией, могут отсутствовать (определяется в зависимости от заказа).

Таблица M.1 – Виды со стороны пайки кабельного разъема LTW

Таолица IVI. 1 — Виды со стороны паики каослыного разъема Е1 W							
Разъем	LTW12-08BFFA-	LTW12-05BMMA-	LTW12-05BFFA-				
1 азысм	SL8001	SL8001	SL8001				
	XS2	XP1	XS1				
Вид со стороны пайки кабельного разъема			0 ₂ 0 ₁ 0 ₃ 0 ₅ 0 ₄				
Назначение	Для подключения системного кабеля	Для подключения датчика давления	Для подключения внешнего термосопротивления				

Таблица М.2 – Виды со стороны пайки кабельного разъема 2РМ

Разъем	2РМТ18КПН7Г1В1В	2РМТ14КПН4Ш1В1В		
	XS2	XP1		
Вид со стороны пайки кабельного разъема	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O ₁ O ₂ O ₃ O ₄		
Назначение	Для подключения системного кабеля	Для подключения датчика давления		

ПРИЛОЖЕНИЕ Н Настройка принтера LX-350

Наименование параметра	Значение параметра
Character spacing	10 срі
Shape of zero	0
Skip-over-perforation	off
Character table	PC866
Onto line feed	off
Tractor	single
Interface	Auto selection (10 sec)
Bit rate	9600 bps
Parity	None
Date length	8 bit
ETX/ACK	off
Software	ESC/p
Auto CR	off

РАСХОДОМЕР ЖИДКОСТИ РС-2М

НКИЯ.407212.001 РЭ

приложение п

Отчёт текущих значений измеряемых параметров

Абонеит ____

РС-2М Версия 1.5.0.0 №1 10:06 28.03.2014г. Мгновенные значения C . 1

Каяал 1

 Расход (Q)
 59.550 м3/ч

 Скорость жидкости (v)
 0.324 м/с

 Температура внутреннего датчика (T1)
 21.01 °C

 Температура внешнего датчика (T2)
 50.11 °C

 Давление (P)
 0.559 МПа

HC MCH

0000-0000

ПРИЛОЖЕНИЕ Р

Отчёт почасовых значений измеряемых параметров

Абонент

PC-2M Версия 1.5.0.0 M1 10:50 28.03.2014г.

C . 1

Кахиалт 1

Часовые ваписи

c 08:00 27.03.2014r. no 08:00 28.03.2014r.

ч.	V, M3	V вос, мЗ	T1,°C	T2,°C	Р, МПа	HC
8	63.991	0.000	21.10	50.21	Ø.558	0000
9	64.014	0.000	21.13	50.18	0.558	0000
10	64.003	0.000	21.15	50.14	0.558	0000
11	62.953	0.000	20.54	51.22	Ø.554	0000
12	62.081	. ଅପପ	19.49	52.61	Ø.547	0000
13	61.784	0.000	19.14	52.98	0.545	ØØØØ
14	61.769	0.000	19.15	52.95	0.544	0000
15	61.856	ଉ.ଡାଡାଡ	19.27	52.81	0.545	0000
16	61.670	0.000	19.13	52.99	0.544	ଉପଉପ
17	61.912	0.000	19.32	52.72	Ø.545	0000
18	62.246	0.000	19.66	52.31	0.547	ଉଉଉଉ
19	62.474	0.000	19.91	51.98	0.549	ଉ ଉଉଉ
20	62.640	0.000	20.10	51.70	0.550	0000
21	62.849	0.000	20.26	51.44	0.551	0000
22	62.925	0.000	20.39	51.29	Ø.552	0000
23	63.102	0.000	20.49	51.14	0.553	0000
Ø	63.516	0.000	20.58	51.02	0.554	ØØØØ
1	63.607	ଅ.ଅଅଅ	20.65	50.90	Ø.554	ଉପଉପ
2	63.715	0.000	20.72	50.83	Ø.555	0000
3	63.783	0.000	20.76	50.74	0.555	ØØØØ
4	63.862	0.000	20.81	50.66	Ø.555	0000
5	64.047	0.000	20.85	50.61	0.556	<i>ପ</i> ଉଉଉ
6	64.139	0.000	20.88	50.55	Ø.556	0000
7	62.655	0.000	20.06	51.89	0.551	0000
	1511.593	0.000		<u></u>		0000
	1:62.983	0.000	20.23	51.49	0.551	
Время						Ø мин.
	 арный объем, м:	3: 16419.236				

приложение с

Отчёт посуточных значений измеряемых параметров

Абонент РС-2M Версия 1.5.0.0 M21 10:55 28.03.2014г. С. 1

Канал 1

Суточные записи

c 08:00 19.03.2014r. no 08:00 28.03.2014r.

C.	V, м3	V вос, м3	T1,°C	T2,°C	Р, МПа	HC
19	1429.863	0.000	20.93	50.05	0.559	0000
20	1439.613	0.000	21.00	49.96	0.559	0000
21	1526.230	0.000	19.54	52.39	Ø.547	0000
22	1610.121	0.000	20.61	50.95	Ø.554	0000
23	1651.348	Ø.ØØØ	21.31	49.93	0.559	0000
24	1552.041	0.000	19.76	52.15	Ø.548	0000
25	1598.398	0.000	21.96	48.83	Ø.565	ଉପଉପ
26	1508.964	0.000	20.30	51.36	Ø.552	ଉପଉପ
27	1511.593	0.000	20.23	51.49	0.551	ଉପଉପ
Сум:	13828.171	0.000				0000
Средн	4:1536.463	0.000	20.63	50.79	Ø.555	
Время	7 #					Ø 4.
Сумма	арный объем, м3:	16419.236				

РАСХОДОМЕР ЖИДКОСТИ РС-2М

11KHM.40/212.001 F

ПРИЛОЖЕНИЕ Т Архив событий

Канал 1

Архив событий с 11:00 28.02.2014г.

no 11:00 28.03.2014r.

			110.7 3.3	LEGO ZOROJEZ	.C.) .L ***1 - n
	3г. Вкл. питания		откл.	18.03.2014	11:28
	łг. Обиов-е ПО		Прошлая версия	1.5.0.0	a a
	lr. Вкл. питания		ОТКЛ п	18.03.2014	T. T. # 5570
	łг. Смена парам.(M)		Период очистки	567	
	łг. Смена парам.(M)	K.1.		отключена	
	łг. Смена парам.(M)		Вр. ак-ти меню	200	
	łг. Смена парам.(M)	K.1.	Лог. Н ИСП	2	
	łг. Смена парам.(М)		Лог. N BP	1.	
11:22 17.03.2014	łг. Смена парам.(М)	K1.	при НС	Qaor	
11:22 17.03.2014	łг. Смена парам.(M)	K.1.	при Q <qmin< td=""><td>1.1100</td><td></td></qmin<>	1.1100	
11:22 17.03.2014	łг. Смена парам.(M)	K3.	Paor	0.2567	
11:22 17.03.2014	łг. Смена парам.(M)		P'max	1.1230	
11:21 17.03.2014	łг. Смена парам.(M)	K3.	Pmin	0.0870	
11:21 17.03.2014	łг. Смена парам.(M)	K 1.	Упр. ДД.	включен	
11:21 17.03.2014	łг. Смена парам.(М)	K1.	T2max	123.0000	
11:20 17.03.2014	łг. Смена парам.(M)	K1.	T2ma×	161.0000	
11:20 17.03.2014	łг. Смена парам.(M)	K.1.	T2min	-33.0000	
11:20 17.03.2014	łг. Смена парам.(М)	K3.	Упр. ДТ виеш.	включен	
11:20 17.03.2014	łг. Смена парам.(M)	K1	Tigor	22.0000	
11:20 17.03.2014	Эг. Смена парам.(M)	K1.	Timax	222.0000	
11:20 17.03.2014	łг. Смена парам.(М)	K1.	Timin	2.0000	
11:19 17.03.2014	łг. Смена парам.(M)	K1	Упр. ДТ внеш.	включен	
11:19 17.03.2014	łг. Смена парам.(М)	K1.	Угр. ДТ виеш.	включен	
11:19 17:03:2014	¥г. Смена парам.(М)	K1.	Qgor	22.0000	
	łг. Смена парам.(М)	K1.	Qorc	0.0550	
	}г. Смена парам.(М)	K1.	Qmax	44455.0000	
	łr. Cmena napam.(M)	K1	Qmin	0.5550	
	łг. Смена парам.(М)	K3.	Qmin	0.5550	
	lr. Смена парам.(М)		Расм. сутки	15	
	¥г. Смена парам.(М)		Начало суток	8	
	łг. Смена парам.(М)	K3	Диаметр	255.0000	
	Yr. Инициализация		Иниц.		
a a n com a y n coso n dada.	ii n iirrengeissiteissisgeis		a core may n		

приложение у

База настроек

Абонент _____ РС-2М Версия 1.5.0.0 №1 10:59 28.03.2014г. База мастроек

C. 1

Каяал 1	
Метрологически	незначимая часть ПО
Метрологически	вижчимая часть ПО
Датчик давления	Į

Датчик температуры внутренний

- 1.5 or 07.03.2014r. - 0.0 or 25.09.2013r.

Минимально допустимое давление (Pmin) Максимально допустимое давление (Рмах) Договорное значение давления (Pdog)

— включен - 2.00 °C - 222,00 °C - 22.00 °C

--- включен

- 0.087 MDa

-- 1.123 MDa

- 0.257 MDa

Датчик температуры внешний Минимально допустимая температура (T2min) Максимально допустимая температура (Т2мах) Договорное значение температуры (T2doo)

Минимально допустимая температура (Timin)

Договорное значение температуры (Tidog)

Максимально допустимая температура (Т1мах)

-- -33,00 °C - 123.00 °C - 33.00 °C

-- включен

Минимально допустимый расход (Qmin) Максимально допустимый расход (Qmax) Минимальное значение расхода (Оотс) Договорное значение расхода при НС (Qdog) Договорное значение расхода при Qотc<Q<Qmin

- 0.055 m3/4 - 22.000 m3/4 - 1.110 m3/9

- 0.555 м3/ч

- 44455.000 m3/4

Вес импульса Диаметр Период очистки - 0.01000 m3/mmn - 255.00 mm - 567 час. - 8 час.

Начало суток Расчетные сутки Период получения данных Логический номер ВР Логический номер ИСП Количество каналов

- 10 cek. --- 1 - 2

- 15

--- 1.

при НС - no Qgor

приложение ф Архив НС

Абонент РС-2М Версия 1.5.0.0 №1 11:06 28.03.2014г.

C .. 1

Канал 1.

Архив нештатных ситуаций

 $C_n = 1$

Лата: 17.03.2014г. 08ч. Объем восстановленный

0.0 m3

Kog HC 0000

Расшифровка НС

Длительность, сек

Лата: 17.03.2014г. 09ч.

Объем восстановленный 0.0 m3

Koa HC aaaa

Kog HC

Koa HC

Koa HC

Расшифровка НС

Длительность, сек

Лата: 17.03.2014г. 11ч. Объем восстановленный

8.8 M3 Расшифровка НС

Нет связи с ИСП Общая НС от ИСП 1082 Длительность, сек 1570

20 1590 Общася НС

Dara: 18.03.2014r. 084.

Объем восстановленный 0.2 m3

1080 Расшифровка НС Длительность, сек

Общая НС от ИСП OSwara HC

1.0 10

Mara: 18.03.2014r. 099.

Объем восстановленный 0.2 m3

Расшифровка НС Нет связи с ИСП

Общая НС от ИСП Общая НС

1082 Длительность, сек

1.0 1.0

20

Jara: 18.03.2014r. 119. Объем восстановленный

3.9 M3

Расшифровка НС

Отсутствие питания OGurasi HC

Koa HC 1001

Длительность, сек 540

РАСХОДОМЕР ЖИДКОСТИ РС-2М

приложение х

Протокол измерений внутреннего диаметра трубопровода

Пред	приятие						_;
Объе	KT						_;
	№ ИСП						_;
№	Наименование	1-й замер	2-й замер	3-й замер	4-й замер	Ср. знач.	
1	Длина окружности (L ₀ , мм)						
2	Наружный диаметр (Д _н , мм)						
3	Толщина стенки (Н, мм)						
4	Внутренний диаметр (Д _и , мм)						
5	Точка средней скорости (Е, мм)						
6	Длина стержня ИСП (L _{исп} , мм)						
7	Установочный размер (L, мм)						
инстр М	змерения производились в соответо ументов: иеталлическая рулетка по ГОСТ 7502 голщиномер	2-69, дата	поверки				_;
Į	дата поверки						
	штангенциркуль						
Į	ата поверки						
Изме	рения произведены представителями ажной организации	1:	ование органи				
в лиц	e:	панмен	одине органи				

наименование организации

В ЛИЦЕ: _______ должность _____ личная подпись

Протокол измерений внутреннего диаметра трубопровода

Пред	приятие					;
Объе	KT					;
	№ ИСП					;
№	Наименование	1-й замер	2-й замер	3-й замер	4-й замер	Ср. знач.
1	Длина окружности (L ₀ , мм)					
2	Наружный диаметр (Д _н , мм)					
3	Толщина стенки (Н, мм)					
4	Внутренний диаметр (Ди, мм)					
5	Точка средней скорости (Е, мм)					
6	Длина стержня ИСП (L _{ИСП} , мм)					
7	Установочный размер (L, мм)					
Į	голщиномер					
Į	дата поверки					
Изме монта	рения произведены представителями: ажной организации	ogijua Aprajjuggi	nuu .			
	е: должность личная подпис			вка подписи		
Поста	авшика	зание организа:				
	е: должность личная подпи			вка подписи		
Потр	ебителя	ание организац	ии			
	е: должность личная подпис			вка подписи	_	
«	» 20 г					

«____» _____20__ г

Поставщика

Протокол измерений внутреннего диаметра трубопровода

Предприятие								
Объект								
Зав. № ИСП								
№	Наименование	1-й замер	2-й замер	3-й замер	4-й замер	Ср. знач.		
1	Длина окружности (L ₀ , мм)							
2	Наружный диаметр (Д _н , мм)							
3	Толщина стенки (Н, мм)							
4	Внутренний диаметр (Ди, мм)							
5	Точка средней скорости (Е, мм)							
6	Длина стержня ИСП (L _{исп} , мм)							
7	Установочный размер (L, мм)							

Измерения производились в соответствии с ГОСТ 8.361-79, с применением следующих инструментов:

металли	металлическая рулетка по ГОСТ 7502-69, дата поверки;								
толщин	омер		_ зав. №						
дата пов	верки			·					
штанген	нциркуль		_ зав. №	-					
дата пов	верки			·					
Измерения произведены представителями: ионтажной организации наименование организации									
наименование организации									
			расшифровка подписи						
Тоставщика наименование организации									
			расшифровка подписи						
Потребителя наименование организации									
			расшифровка подписи						
// \	20 -								

По вопросам продаж и поддержки обращайтесь:

Астана +7(77172)727-132 Волгоград (844)278-03-48 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Казань (843)206-01-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Москва (495)268-04-70 Нижний Новгород (831)429-08-12 Новосибирск (383)227-86-73 Ростов-на-Дону (863)308-18-15 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Уфа (347)229-48-12

Единый адрес: trb@nt-rt.ru **Веб-сайт:** www.turbodon.nt-rt.ru